K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

khá là khó

16 tháng 6 2017

Bài này lớp 6 mà bạn

Đặt c1=a1-b1, ... , c5=a5-b5.

Có c1+ c+ ...+ c5

= (a1-b1)+(a2-b2)+...+(a5-b5)

= (a1+a2+...+a5)-(b1+b2+...+b5)

=0 (vì b1, b2, b3, b4, b5 là hoán vị của a1, a2, a3, a4, a5)

=> Trong 5 số c1,...,ccó một số chẵn vì từ c1 đến c5 có 5 số

=> Trong các số a1-b1,...,a2-bcó một số chẵn

Vậy ... (đpcm)

26 tháng 8 2019

a A 3 2 4 1 c b B 3 2 4 1

a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh

\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu 

Do đó \(\widehat{A_1}=\widehat{B_3}\)

Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù

=> \(\widehat{A_4}=180^0-\widehat{A_1}\)                                  \((1)\)

Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù

=> \(\widehat{B_2}=180^0-\widehat{B_3}\)                                 \((2)\)

\(\widehat{A_1}=\widehat{B_3}\)                                                      \((3)\)

Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)

b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) theo câu a

Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh

\(\widehat{A_1}=\widehat{B_3}\) câu a

Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh

\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)

c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù

\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài

Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)

Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù

\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)

26 tháng 8 2019

mik chịu thui xin lỗi bạn

Giải:

Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5

Xét tổng c1+c2+c3+...+c5 ta có:

c1+c2+c3+...+c5

=(a1−b1)+(a2−b2)+...+(a5−b5)

=0

⇒c1;c2;c3;c4;c5 phải có một số chẵn

⇒c1.c2.c3.c4.c5⋮2

Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)

Phần a:Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a8}{a9}=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)

=>Tử số = mẫu số.

Phần b:Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c+a-b+c}{a+b-c+a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2a+2c}{2a-2c}=\frac{a+c}{a-c}=\frac{2b}{2b}=1\)

=>a+c=a-c

<=>2c=0

<=>c=0.

11 tháng 3 2020

Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5c1=a1−b1;c2=a2−b2;...;c5=a5−b5

Xét tổng c1+c2+c3+...+c5c1+c2+c3+...+c5 ta có:

c1+c2+c3+...+c5c1+c2+c3+...+c5

=(a1−b1)+(a2−b2)+...+(a5−b5)=(a1−b1)+(a2−b2)+...+(a5−b5)

=0=0

⇒c1;c2;c3;c4;c5⇒c1;c2;c3;c4;c5 phải có một số chẵn

⇒c1.c2.c3.c4.c5⋮2⇒c1.c2.c3.c4.c5⋮2

Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2(a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)

14 tháng 12 2017

Bạn xem hướng dẫn ở đây:

Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath

14 tháng 9 2019

Tham khảo : Câu hỏi của huy nguyễn - Toán lớp 7 - Học toán với OnlineMath

10 tháng 7 2017

hình đâu