CM \(\frac{2017^3+17^3}{2017^3+2000^3}=\frac{2017+17}{2017+2000}\)
các bạn ơi giúp mình với nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài : a3 + b3 +c3 = 3abc và a;b;c >0 nên : a = b = c (cái này mk k bịa ra nah ) có quy tắc nha !
Vậy biểu thức trên sẽ bằng 1 + 1 +1 = 3
Chúc bn hc tốt :3
Mình giúp bạn nha!
A = 2017/1 + 2017/2 + 2017/3 + . . . + 2017/2018 / 2017/1 + 2016/2 + 2015/3 + . . .+ 1/2017
= 2017 . ( 1 + 1/2 + 1/3 + . . . +1/2018 ) / ( 2017 . 2016 . 2015 . . . 1) . ( 1 + 1/2 + 1/3 +. . . + 1/2017 )
= 1/2016 . 2015 . 2014. . . 1
k mình nha
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
\(\frac{2017^{2000}+2001}{2017^{2017}+2001}\)= \(1\frac{2}{2017^{2017}+2001}\)và \(\frac{2017^{2001}-2000}{2017^{2018}-2000}\)=\(1\frac{2}{2017^{2018}-2000}\)
Vì \(\frac{2}{2017^{2017}+2001}\)<\(\frac{2}{2017^{2018}-2000}\)nên B>A
Ta có:\(\frac{2017^{18}+1}{2017^{17}+1}>1\)
\(\Rightarrow\frac{2017^{18}+1}{2017^{17}+1}>\frac{2017^{18}+1+2016}{2017^{17}+1+2016}=\frac{2017^{18}+2017}{2017^{17}+2017}\)\(=\frac{2017\left(2017^{17}+1\right)}{2017\left(2017^{16}+1\right)}=\frac{2017^{17}+1}{2017^{16}+1}\)
Vậy \(\frac{2017^{17}+1}{2017^{16}+1}< \frac{2017^{18}+1}{2017^{17}+1}\)
Thanks you nhiều nha,lần sau nhớ giải hộ mình các bài toán khác nữa nha
nhìn tui mà học tập
X + 25 -17 = 2017 X - (25 + 17) = 2017
X + 25 = 2017 + 17 X - 42 = 2017
X + 25 = 2024 X = 2017 + 42
X = 2024 - 25 X = 2059
X = 2009
Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?