tìm số tự nhiên a nhỏ nhất có 3 chữ số sao cho lấy số đó chia cho 11 dư 1 ; chia cho 13 dư 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
tìm số tự nhiên a nhỏ nhất có 3 chữ số sao cho lấy số đó chia cho 11 thì dư 7, chia cho 13 thi dư 10
a chia 11 dư 7;
a chia 13 dư 10;
=> a + 81 chia hết cho 11 và 13
=> a + 81 chia hết cho 11*13 = 143
=> a + 81 có dạng: a + 81 = 143*k => a = 143*k - 81. a nhỏ nhất khi k nhỏ nhất
mà a có 3 chữ số => 100 < a = 143*k - 81 => k > 181/143 => k nhỏ nhất bằng 2.
=> a nhỏ nhất = 143*2 -81 = 205.
Cái lũ chép bài của mình ?!
Tại sao là +81??? có biết không???
Gọi a là số cần tìm .
Theo đề :
\(\Rightarrow\hept{\begin{cases}a-7⋮11\\a-11⋮13\end{cases}\Rightarrow\hept{\begin{cases}a-7+22⋮11\\a-11+26⋮13\end{cases}}\Rightarrow\hept{\begin{cases}a-15⋮11\\a-15⋮13\end{cases}}}\)
\(\Rightarrow a-15\in BC\left(11,13\right)\)
\(\Rightarrow BC\left(11,13\right)=B\left(143\right)=\left\{0;143;286;...\right\}\)
Mà a là số tự nhiên nhỏ nhất có ba chữ số \(\Rightarrow a-15\in\left\{143\right\}\)
\(\Rightarrow a=143+15\Rightarrow a=158\)
Vậy a = 158
P/s: Hình như mình làm sai , mong các bạn thông cảm
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
a:11 dư 7
2a:11 dư 3
2a : 13 dư 3
=>2a +3 chia hết cho 11 và3
=> 2a + 3 thuộc ƯC(11,13)={143,286,.........}
Vì a là số tự nhiên nhỏ nhất có 3 chữ số
=>2a +3 = 143
=>2a=140
=>a=70
Goi số đó là \(x\) ( \(x\) \(\in\) A = {\(x\) \(\in\) N/ 100 \(\le\) \(x\) 999} )
Theo bài ra ta có:
\(\left\{{}\begin{matrix}x+4⋮7\\x+6⋮11\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}11.\left(x+4\right)⋮77\\7.\left(x+6\right):77\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}11x+44⋮77\\7x+42⋮77\end{matrix}\right.\)
Trừ vế với vế ta được: 4\(x\) + 2 \(⋮\) 77 ⇒ 2.(\(2x\) + 1) ⋮ 77
⇒ 2\(x\) + 1 ⋮ 77 ⇒ 6\(x\) + 3 ⋮ 77 ⇒ 7\(x\) + 42 - (6\(x\) - 3)⋮ 77
⇒ \(x\) + 39 \(⋮\) 77 ⇒ \(x\) + 39 \(\in\) B(77) = { 77; 154; 231;....;}
⇒ \(x\) \(\in\) { 38; 115; 192;.....;}
Vì \(x\) là số tự nhiên bé nhất có 3 chữ số nên \(x\) = 115
Kết luận: Số tự nhiên thỏa mãn đề bài là 115
Bài 2 :
Gọi số cần tìm là a. Ta có
a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1)
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2)
a +83 chia hết cho 143
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* )
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203
Vậy số cần tìm là 203.