Với một bánh xe quay với gia tốc góc không đổi quanh một trục qua tâm của nó, tỉ số tốc độ của một điểm trên vành bánh xe với tốc độ của một điểm nằm giữa vành và tâm, bằng: A. 1 B. 2 C. 1/2 D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Bánh xe quay đều 100 vòng trong thời gian 2s\(\Rightarrow\) \(f=\dfrac{2}{100}=0,02\)vòng/s
Tần số quay của bánh xe: \(f=50\) vòng/s
Chu kì quay: \(T=\dfrac{1}{f}=\dfrac{1}{50}s\)
2.Vận tốc góc của 1 điểm trên vành bánh xe: \(\omega=\dfrac{2\pi}{T}=100\pi\) rad/s
Vận tốc dài của 1 điểm trên vành bánh xe: \(v=\omega.r=100\pi.0,6=60\pi\) m/s
3. Gia tốc hướng tâm của 1 điểm trên vành bánh xe:
\(a_{ht}=\dfrac{v^2}{r}=\dfrac{\left(60\pi\right)^2}{0,6}\approx59217,63\) m/s2
Chọn đáp án B
+ Theo bài ra ta có R A = 50cm
Suy ra R B = 25 c m
+ Điểm A: (m/s)
+ Điểm B: (m/s)
R=30cm=0,3m
v=64,8km/h=18m/s
Tốc độ góc của 1 điểm trên vành ngoài bánh xe:
\(\text{ω}=\dfrac{v}{R}=\dfrac{18}{0,3}=60\) (rad/s)
Chu kì quay của bánh xe:
\(T=\dfrac{2\text{π}}{\text{ω}}=\dfrac{2\text{π}}{60}=\dfrac{\text{π}}{30}\) (s)
Gia tốc hướng tâm của điểm đó:
\(a_{ht}=\text{ω}^2R=60^2.0,3=1080\) (m/s2)
Bánh xe quay đều với tốc độ góc ω = 2π (rad/s).
Do đó một điểm M thuộc vành ngoài bánh xe cũng quay đều với cùng tốc độ góc ω = 2π (rad/s).
Chu kỳ quay của M: T = 2π/ω = 1 (s).
Tần số quay của M: f = 1/T = 1 Hz.
Tốc độ dài của M: v = R.ω = 0,3.2π = 0,6π (m/s) ≈ 1,9 (m/s).
Gia tốc hướng tâm của M: an = R.ω2 = 0,3.(2π)2 = 12 m/s2.
Ta có:
+ Chu kì quay của bánh xe:
+ Tần số:
+ Tốc độ góc:
+ Tốc độ dài của một điểm trên vành bánh xe:
Tốc độ điểm nằm trên vành: v1=wR
Tốc độ điểm nằm chính giữa vành và tâm: v2=w\(\dfrac{R}{2}\)
\(\Rightarrow\) Tỉ số \(\dfrac{v_1}{v_2}\)= 2