M= 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +......... + 2/48.49.50
AI NHANH MÌK K CHO
AI K MÌK MÌK K LẠI CHO NHEA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mắc j k... bn biết mà mik k biết thì mik hỏi chứ... VÔ DUYÊN
S.4=1.2.3.4+2.3.4.4+...+k(k+1)(k+1).4
=1.2.3(4-0)+2.3.4.(5-1)+...+k(k+1)(k+2)(k+3-k-1)
=1.2.3.4-0+1.2.3.4-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
=(k-1)k(k+1)(k+2)
=>4S+1=(k-1)k(k+1)(k+2)+1
do (k-1)k(k+1)(k+2) là tích 4 số tự nhiên liên tiếp mà tích 4 số tự nhiên liên tiếp +1 luôn là số chính phương ( cái này bạn tự chứng minh )
=> 4S+1 là số chính phương (đpcm)
Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= 1/4. k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= 1/4. k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.
Ta có: k(k + 1)(k + 2) = 1/4. k(k + 1)(k + 2). 4
= \(\frac{1}{4}\). k(k + 1)(k + 2). [(k + 3) - (k - 1)]
= \(\frac{1}{4}\). k(k + 1)(k + 2)(k + 3) - 1/4. k(k + 1)(k + 2)(k - 1)
=> 4S = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
= k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Đây là tổng của 4 số liên tiếp cộng 1 nên luôn là số chính phương.
Ta có : \(k\left(k+1\right)\left(k+2\right)=\frac{1}{4}k\left(k+1\right)\left(k+2\right).4\)
\(=\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\)
\(=\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\frac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k-1\right)\)
=> 4S = 1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+k(k+1)(k+2)(k+3)-k(k+1)(k+2)(k-1)
\(=k\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
=> \(4S+1=k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1\)
\(=\left[k\left(k+3\right)\right]\left[\left(k+1\right)\left(k+2\right)\right]+1\)
\(=\left[\left(k^2+3k\right)\left(k^2+k+2k+2\right)\right]+1\)
Đặt \(t=k^2+3k\)
\(=>4S+1=t\left(t+2\right)+1\)
= \(t^2+2t+1\)
\(=\left(t+1\right)^2\)
\(=>4S+1=\left(k^2=3k\right)^2=>4S+1\) là số chính phương
4F = 1.2.3(4-0) + 2.3.4(5-1) +3.4.5.(6-2) +......+ k.(k+1)(k+2)[(k+3) - (k-1)]
= 1.2.3.4 - 0 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ......+ k(k+1)(k+2)(k+3)- (k-1)k(k+1)(k+2) = k(k+1)(k+2)(k+3)
F = \(\frac{k\left(k+1\right)\left(k+2\right)\left(k+3\right)}{4}\)
=> 4F + 1 =\(k\left(k+1\right)\left(k+2\right)\left(k+3\right)+1\)=[k(k+3)][(k+1)(k+2)] +1 =(k2+3k)(k2+3k+2) + 1
= (k2+3k)2 +2(k2+3k) +1 = (k2+3k+1)2
=> 4F + 1 là số chình phương
\(M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\)
\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{2}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
\(M=\frac{1}{1.2}-\frac{1}{49.50}\)
\(M=\frac{1}{2}-\frac{1}{2450}=\frac{612}{1225}\)