Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mắc j k... bn biết mà mik k biết thì mik hỏi chứ... VÔ DUYÊN
\(M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{48.49.50}\)
\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{2}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\)
\(M=\frac{1}{1.2}-\frac{1}{49.50}\)
\(M=\frac{1}{2}-\frac{1}{2450}=\frac{612}{1225}\)
3F= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>F
H=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
=> 4H=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
5,Ta có
A=1/2+1/2^2+1/2^3+...+1/2^100
2A=1+1/2+1/2^2+1^2/3+...+1/2^99
2A-A=(1+1/2+1/2^2+1^2/3+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^100)
A=1-1/2^100
A = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{99.100.101}\)
=> A = \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)
= \(\frac{1}{2}.\frac{5049}{10100}\)
= \(\frac{5049}{20200}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{99.100.101}=\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{100.101}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5050}{10100}-\frac{1}{10100}\)
\(\Rightarrow2A=\frac{5049}{10100}\Rightarrow A=\frac{5049}{10100}:2=\frac{5049}{20200}\)
A=6+16+30+48+...+19600+19998
2A = 1.3+2.4+3.5+...+99.101
B=2+5+9+14+...+4949+5049
2A = 1.4+2.5+3.6+...+99.102
C=1.2.3+2.3.4+3.4.5+...+98.99.100
4A = 1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+98.99.100.(101-97)
4A = 1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+98.99.100.101-97.98.99.100
4A = 98.99.100.101
A=6+16+30+48+...+19600+19998
A : 2 = 3 + 8 + 15 + 24 + . . . + 9800 + 9999
A : 2 = 1.3 + 2.4 + 3.5 + 4.6 + . . . + 98.100 + 99.101
A : 2 = 1.[1+2] + 2.[1+3] + 3.[1+4] + 4.[1+5] + . . . + 98.[1+99] + 99.[1+100]
A : 2 = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 + 4.5 + . . . + 98 + 98.99 + 99 + 99.100
A : 2 = 1 + 2 + 3 + 4 + . . . + 199 + 1.2 + 2.3 + 3.4 + 4.5 + . . . + 98.99 + 99.100
A : 2 = 4950 + 333300
A = 676500
Ở sbt 6 tập mấy ko nhớ có bài tương tự trong ngoặc, mở phần lời giải ra để tính trong ngoặc nha