Tìm số tự nhiên n để n^5+n+1 là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
Cái này thì chắc chắn là không có số n nào thỏa mãn rồi bạn
Bởi vì (n+5)(n+1) ko bao giờ là số nguyên tố
+ Với \(n=1\)\(\Rightarrow\)\(n+5=1+5=6\)( Là hợp số, loại )
+ Với \(n=2\)\(\Rightarrow\)\(\hept{\begin{cases}n+1=2+1=3\\n+5=2+5=7\\n+9=2+9=11\end{cases}}\)( TM )
+ Với \(n=3\)\(\Rightarrow\)\(n+5=3+5=8\)( Là hợp số, loại )
+ Với \(n>3\)thì n có dạng \(\hept{\begin{cases}n=3k+1\\n=3k+2\end{cases}}\)\(\left(k>0\right)\)
+ Với \(n=3k+1\)\(\Rightarrow\)\(n+5=3k+6=3.\left(k+2\right)⋮3\)( Là hợp số, loại )
+ Với \(n=3k+2\)\(\Rightarrow\)\(n+1=3k+3=3.\left(k+1\right)⋮3\)( Là hợp số, loại )Vậy \(n=2\)
\(B=n^5+n^4+1=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1\)
\(=\left(n^2+n+1\right)\left(n^3-n+1\right)\)
+) Với \(n=0\Rightarrow B=1\)không là số nguyên tố (loại)
+) Với \(n=1\Rightarrow B=3\)là số nguyên tố(thỏa mãn)
+) Với \(n\ge2\left(n\in N\right)\Rightarrow n^3-n+1\ge n^2+n+1\ge7\)
Do đó B là hợp số
Vậy n=1 là giá trị cần tìm.
Ta có:\(n^5+n^4+1=n^5+n^4+n^3-n^3+1\)
\(=n^3\left(n^2+n+1\right)-\left(n-1\right)\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(n^3-n-1\right)\)
Đk để là số nguyên tố thì:
\(n^2+n+1=1\)hoặc \(n^3-n-1=1\)
Xét \(n^2+n+1=1\Rightarrow n^2+n=0\Rightarrow\orbr{\begin{cases}n=1\left(tm\right)\\n=-1\left(ktm\right)\end{cases}}\)
Xét \(n^3-n+1=1\Rightarrow n^3-n=0\Rightarrow n\left(n^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\\orbr{\begin{cases}n=1\left(tm\Rightarrow\right)\\n=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}n=0\left(tm\right)\\n=1\left(tm\right);n=-1\left(ktm\right)\end{cases}}\)
Tại \(n=0\Rightarrow A=1\left(ktm\right)\)Vì 1 không phải số ngto
Tại\(n=1\Rightarrow A=3\left(tm\right)\)vì 3 là số ngto
Vậy ...
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
Vì n+n =2n (chẵn)
Vì trong các số nguyên tố chỉ có 2 số nguyên tố liên tiếp là 2,3
=>2n+1=3
=>n=1
tíc mình nha
n = 1 là số tự nhiên duy nhất