timf x y thuộc Z biết x^2 (x-y) = 5(y-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0
+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:
x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)
= x+y+z/2.(x+y+z) = 1/2 = x+y+z
=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2
=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2
=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2
=> x=1/6 = y; z = -1/2
b) Theo bài ra ta có:
x + 1/x = k (k thuộc Z)
=> x^2+1/x = k
+ Với k = 0 => x = 0 (thỏa mãn)
+ Với k khác 0, do k nguyên nên x^2+1/x nguyên
=> x^2+1 chia hết cho x
=> 1 chia hết cho x
=> x thuộc {1 ; -1} (thỏa mãn)
Vậy số hữu tỉ x cần tìm là 0; 1; -1
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2+z^2}{25-9+4}=\frac{40}{20}=2\)
Suy ra:
x = 2 x 5 = 10
y = 2 x 3 = 6
z = 2 x 2 = 4
Hồi trưa mình cx nghĩ cách giống bạn nhưng khi thay vào thì lại ko đúng
Ta có :
\(\frac{4}{x}+\frac{y}{3}=\frac{5}{6}\)
\(\Leftrightarrow\)\(\frac{4}{x}=\frac{5}{6}-\frac{y}{3}\)
\(\Leftrightarrow\)\(\frac{4}{x}=\frac{5-2y}{6}\)
\(\Leftrightarrow\)\(x\left(5-2y\right)=24\)
Lập bảng xét \(Ư\left(24\right)\) ( tự lập )
Chúc bạn học tốt ~
2x=3y
=>\(\dfrac{x}{3}=\dfrac{y}{2}\)
=>\(\dfrac{x}{9}=\dfrac{y}{6}\)
4y=3z
=>\(\dfrac{y}{3}=\dfrac{z}{4}\)
=>\(\dfrac{y}{6}=\dfrac{z}{8}\)
=>\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)
mà x-y+2z=57
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x-y+2z}{9-6+2\cdot8}=\dfrac{57}{19}=3\)
=>x=27; y=18; z=24
x2 (x-y) = 5(y-1) <=> x3 - yx2 - 5y + 5 = 0
<=> y(x2 + 5) = x3 + 5
<=> y = \(\frac{5+x^3}{5+x^2}=\frac{5}{5+x^2}-\frac{5x}{5+x^2}\)+ x
Để y nguyên thì cái đằng sau nguyên còn lại tự làm nha
Tìm được x = 0; y = 1