K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BM
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
OP
0
LH
0
DN
0
ML
0
G
2
18 tháng 4 2016
Ta thấy:
(x+1) chia hết cho x
Mà x+1 và x là hai số tự nhiên liên tiếp
=> x+1 = 2 và x= 1
Nhưng x, y > 1
=>Đề bài không hợp lí
AH
Akai Haruma
Giáo viên
9 tháng 7 2023
Lời giải:
Vì $x+1, y+2013$ chia hết cho $6$ nên đặt $x+1=6k, y+2013=6m$ với $k,m\in\mathbb{N}^*$
Khi đó:
$4^{x}+x+y=4^{6k-1}+6k-1+6m-2013$
$=4^{6k-1}-2014+6(k+m)$
Vì $4\equiv 1\pmod 3$
$\Rightarrow 4^{6k-1}\equiv 1^{6k-1}\equiv 1\pmod 3$
$\Rightarrow 4^{6k-1}-2014\equiv 1-2014\equiv -2013\equiv 0\pmod 3$
$\Rightarrow 4^{6k-1}-2014\vdots 3$
Mà $4^{6k-1}-2014$ chẵn với mọi $k\in\mathbb{N}^*$
$\Rightarrow 4^{6k-1}-2014\vdots 6$
Kết hợp với $6k+6m\vdots 6$
$\Rightarrow 4^x+x+y=4^{6k-1}-2014+6k+6m\vdots 6$ (đpcm)
B
0
Xin lỗi \(y=-1;x\in Z\)giờ thì đúng rồi nhé