K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Bài này ta dùng phương pháp trục căn thức ở mẫu 

Ta có: \(\frac{1}{a}=\frac{1}{\sqrt{2004}-\sqrt{2003}}=\frac{\sqrt{2004}+\sqrt{2003}}{\left(\sqrt{2004}-\sqrt{2003}\right)\left(\sqrt{2004}+\sqrt{2003}\right)}\)

 \(=\frac{\sqrt{2004}+\sqrt{2003}}{2004-2003}=\frac{\sqrt{2004}+\sqrt{2003}}{1}=\sqrt{2004}+\sqrt{2003}\)

Tương tự: 1/b = căn 2005 + căn 2004

Vì căn 2004 + căn 2003 < căn 2005 + căn 2004

=> căn 2004 - căn 2003 > căn 2005 - căn 2004

Vậy a > b

P/s: Bài giải còn nhiều sai sót, mong các anh chị thông cảm và sửa cho em.

12 tháng 1 2018

cái j z

12 tháng 1 2018

không biết cái chi mới hỏi mày đó

25 tháng 1 2019

 x = 4

 y = 9

25 tháng 1 2019

\(\hept{\begin{cases}3x+2y=30\left(1\right)\\2x+3y=35\left(2\right)\end{cases}}\)

Lấy (1) - (2) ta có: 

\(3x+2y-2x-3y=30-35\)

\(\Leftrightarrow x-y=-5\)(3)

Lấy (2) + (1) ta có: 

\(2x+3y+3x+2y=30+35\)

\(\Leftrightarrow5\left(x+y\right)=65\)

\(\Leftrightarrow x+y=13\)(4)

Từ (3) và (4) ta có:

\(\hept{\begin{cases}x-y=-5\\x+y=13\end{cases}}\)

Đến đây bạn tự làm nốt nhé~

1 tháng 11 2016

Ta có 

x + x2 + x3 + x4 = y + y2 + y3 + y4

<=> (x - y) + (x2 - y2) + (x3 - y2) + (x4 - y4) = 0

<=> (x - y)[1 + x + y + x2 + xy + y2 + (x2 + y2)(x + y)]

<=> (x - y)(2 + 2x + 2y + xy)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\2+2x+2y+xy=0\end{cases}}\)

Tới đây bạn tự giải tiếp nhé. Tính không giải đâu mà thấy bạn nhờ nên mới giải tiếp 

1 tháng 11 2016

1/ \(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=6\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}ab=6\\a^5+B^5=35\end{cases}}\)

\(\Rightarrow a^5+\frac{6^5}{a^5}=35\)

PT này vô nghiệm vậy pt ban đầu vô nghiệm

29 tháng 9 2016

x=7 và y=2,5

29 tháng 9 2016

cho mình cách giải vs bạn ~~~

23 tháng 6 2017

\(pt\left(2\right)\Leftrightarrow\left(x^4\right)^2+\left(y^4\right)^2=35\)

\(\Leftrightarrow\left(x^4+y^4\right)^2-2x^4y^4=35\)

\(\Leftrightarrow\left(x^4+y^4\right)^2-2x^4y^4=35\)

\(\Leftrightarrow\left(\left(x^2\right)^2+\left(y^2\right)^2\right)^2-2x^4y^4=35\)

\(\Leftrightarrow\left(\left(x^2+y^2\right)^2-2x^2y^2\right)^2-2\left(xy\right)^4=35\)

\(\Leftrightarrow\left[\left(\left(x+y\right)^2-2xy\right)^2-2\left(xy\right)^2\right]^2-2\left(xy\right)^4=35\)

Và \(pt\left(1\right)\Leftrightarrow xy\left(x+y\right)=30\)

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\Rightarrow S^2\ge4P\) thì có:

\(\hept{\begin{cases}\left[\left(S^2-2P\right)^2-2P^2\right]^2-2P^4=35\\SP=30\end{cases}}\)

Thay lẫn lộn vào nhau giải ra thì có....

23 tháng 6 2017

Thắng Nguyễn cách này không khả thi đâu. You cứ giải đến cuối sẽ thấy.