\(\left(2-\sqrt{ }2^{ }\right)^2+\sqrt{32}\)
Tính giúp mình bài toán này nhé !! thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 3-x +4can 3-x +4 +x =13
4căn 3-x = 6
16(3-x) = 36
48-36 = 16x
x = 16/12 = 4/3
Khai triển và phân tích nhân tử \(\left(x+2\right)^2+4\left(y-1\right)^2=4xy+13\)
ta có pt sau đây \(\left(x-2y-1\right)\left(x-2y+5\right)=0\)(***)
Nhận xét: \(x^2-xy-2y^2=\left(x+y\right)\left(x-2y\right)\).
Trường hợp 1: \(x-2y=1\)
Pt sau trở thành \(\sqrt{\frac{3y+1}{y+1}}+\sqrt{3y+1}=\frac{2}{\sqrt{\left(y+1\right)\left(3y+1\right)}}\)
Đặt \(a=\sqrt{3y+1},b=\sqrt{y+1}\)
Ta có hệ: \(\hept{\begin{cases}\frac{a}{b}+a=\frac{2}{ab}\\a^2-3b^2=-2\end{cases}}\)
Tới đây chắc bạn giải được rồi đó.
Hừm. Mình nghĩ mình nên giải thích cho bạn cách phân tích (***).
Lúc khai triển pt đầu ra ta có: \(x^2+2\left(2-2y\right)x+4y^2-8y-5=0\).
Coi như đây là pt ẩn \(x\), ta tính \(\Delta'=\left(2-2y\right)^2-\left(4y^2-y-5\right)=9\).
Pt có 2 nghiệm: \(x_1=2y-2+3=2y+1\), \(x_2=2y-2-3=2y-5\).
Theo hệ quả định lí Bezout ("Nếu đa thức có nghiệm \(x=a\) thì khi phân tích thành nhân tử sẽ có nhân tử \(x-a\)), ta có các phân tích \(\left(x-2y-1\right)\left(x-2y+5\right)\).
Đây chỉ là phần làm nháp, bạn không cần trình bày vào bài.
1) \(\sqrt{\left(1-\sqrt{2}\right)^2}\)\(+\sqrt{\left(\sqrt{2}+3\right)^2}\)
\(=1-\sqrt{2}+\sqrt{2}+3\)
\(=4\)
2) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-2+\sqrt{3}-1\)
\(=2\sqrt{3}-3\)
A\(\left(3-\sqrt{3}\right)\left(-2\sqrt{3}\right)+\left(3\sqrt{3}+1\right)^2\)=\(6-6\sqrt{3}+9+6\sqrt{3}+1\)
=16
B,\(\left(3\sqrt{5}-2\sqrt{3}\right)\sqrt{5}+\sqrt{60}\) =\(15-2\sqrt{15}+2\sqrt{15}=15\)
con gái hay con trai thế?
mk không bít nha
mk học lớp 7 thui
k nhé
thank nhìu
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
\(=\dfrac{\sqrt{a}+2+\sqrt{a}-2}{a-4}:\dfrac{\sqrt{a}+2-2}{\sqrt{a}+2}\)
\(=\dfrac{2\sqrt{a}}{a-4}\cdot\dfrac{\sqrt{a}+2}{\sqrt{a}}=\dfrac{2}{\sqrt{a}-2}\)
= 6 - 4\(\sqrt{2}\)+\(\sqrt{32}\)
=6.
kik mình nha!!!
=4-4\(\sqrt{2}\)+2 +4\(\sqrt{2}\)
=6