Cho: \(x^2-\left(m-3\right)x+2m-11=0\)
a)Cm: pt luôn có 2 nghiệm pb với mọi m
b)Tìm m để pt luôn có 2 nghiệm pb \(x_1:x_2\) là độ dài 2 cạnh của một tam giác vuông cạnh huyền =4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Δ=(m-1)^2-4(-m^2+m-1)
=m^2-2m+1+4m^2-4m+4
=5m^2-6m+5
=5(m^2-6/5m+1)
=5(m^2-2*m*3/5+9/25+16/25)
=5(m-3/5)^2+16/5>=16/5>0 với mọi m
=>Phương trình luôn có hai nghiệm pb
b: |x2|-|x1|=2
=>x1^2+x2^2-2|x1x2|=4
=>(m-1)^2-2(-m^2+m-1)-2|-m^2+m-1|=4
=>(m-1)^2=4
=>m=3 hoặc m=-1
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)
(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))
Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)
\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\)
\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)
Thế vào \(x_1x_2=2m\)
\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)
\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)
\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))
a: Khi m=-3 thì (1): x^2-(-x)-2=0
=>x^2+x-2=0
=>x=-2 hoặc x=1
b: Δ=(m+2)^2-4(m+1)
=m^2+4m+4-4m-4=m^2>=0
=>Phương trình luôn có 2 nghiệm
a)
\(x^2-2\left(m+1\right)x+4m-m^2=0\)
Ta có : (a = 1 ; b = 2(m+1) ; b' = m + 1 ; c = 4m-m2 )
\(\Delta'=b'^2-ac\)
= \(\left(m+1\right)^2-1.\left(4m-m^2\right)\)
= m2 + 2m + 1 -4m +m2
= 2m2 -2m + 1
= 2 ( m-1)2 > 0 (phuong trinh luon co 2 nghien pb \(\forall m\)
a) có \(\Delta'=\left[-\left(m+1\right)\right]^2-4m+m^2\)
\(=m^2+2m+1-4m+m^2\)
\(=2m^2-2m+1\)
\(=2\left(m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+1\right)\)
\(=2\left(m-\frac{1}{2}\right)^2+\frac{1}{2}>0\forall m\)
\(\Rightarrow pt\) trên luôn có 2 nghiệm pb \(\forall m\)
b) ta có vi - ét \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=4m-m^2\end{cases}}\)
theo bài ra \(A=\left|x_1-x_2\right|\)
\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2\)
\(\Leftrightarrow A^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=4m^2+8m+4+4m^2-16m\)
\(\Leftrightarrow A^2=8m^2-8m+4\)
\(\Leftrightarrow A^2=8\left(m^2-m+\frac{1}{2}\right)\)
\(\Leftrightarrow A^2=8\left(m-\frac{1}{2}\right)^2+2\ge2\)
dấu "=" xảy ra \(\Leftrightarrow m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\)
vậy MIN A^2 = \(2\Leftrightarrow m=\frac{1}{2}\)
a) \(\Delta\)=(m-3)2-4.1.(2m-11)=m2-14m+53=(m-7)2+4\(\ge\)4.
\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
b) Từ ycđb, ta có: x12+x22=42 \(\Leftrightarrow\) (x1+x2)2-2x1x2=16 \(\Leftrightarrow\) (m-3)2-2(2m-11)=16 \(\Leftrightarrow\) m2-10m+15=0 \(\Leftrightarrow\) \(m=5\pm\sqrt{10}\).
Tks ạ!