so sánh các phân số sau ( n là số tự nhieen)
\(\dfrac{n}{n+3}:\dfrac{n-1}{n+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: B là số nguyên
=>n-3 thuộc {1;-1;5;-5}
=>n thuộc {4;2;8;-2}
3:
a: -72/90=-4/5
b: 25*11/22*35
\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)
c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
Lời giải:
$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$
$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$
Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$
Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$
Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$
-------------------------
$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$
$<1-\frac{n+3}=\frac{n}{n+3}$
\(a,\dfrac{11}{49}< \dfrac{11}{46};\dfrac{11}{46}< \dfrac{13}{46}\\ Nên:\dfrac{11}{49}< \dfrac{13}{46}\\ b,\dfrac{62}{85}< \dfrac{62}{80};\dfrac{62}{80}< \dfrac{73}{80}\\ Nên:\dfrac{62}{85}< \dfrac{73}{80}\\ c,\dfrac{n}{n+3}< \dfrac{n}{n+2};\dfrac{n}{n+2}< \dfrac{n+1}{n+2}\\ Nên:\dfrac{n}{n+3}< \dfrac{n+1}{n+2}\)
a) \(\dfrac{n+2}{3}\) là số tự nhiên khi
\(n+2⋮3\)
\(\Rightarrow n+2\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{-1;1\right\}\left(n\in Z\right)\)
b) \(\dfrac{7}{n-1}\) là số tự nhiên khi
\(7⋮n-1\)
\(\Rightarrow7n-7\left(n-1\right)⋮n-1\)
\(\Rightarrow7n-7n+7⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\in\left\{1;7\right\}\Rightarrow\Rightarrow n\in\left\{2;8\right\}\left(n\in Z\right)\)
c) \(\dfrac{n+1}{n-1}\) là sô tự nhiên khi
\(n+1⋮n-1\)
\(\Rightarrow n+1-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+1-n+1⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\left(n\in Z\right)\)
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)
\(\Rightarrow P< 1\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}\\ A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\left(\dfrac{1}{n}>0\right)\)
\(\dfrac{n}{n+3}-\dfrac{n-1}{n+4}\)
\(=\dfrac{n^2+4n-n^2-2n+3}{\left(n+4\right)\left(n+3\right)}=\dfrac{2n+3}{\left(n+4\right)\left(n+3\right)}>0\)
=>n/n+3>(n-1)/(n+4)