K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

A = 1

nha bạn  mình chắc chắn

11 tháng 8 2016

nhưng cách lm như têk nào hả bạn

31 tháng 7 2023

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}\)

\(\dfrac{1}{2.2}< \dfrac{1}{1.2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3.3}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{4.4}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{2009.2009}< \dfrac{1}{2008.2009}=\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)

\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{2009.2009}< 1\)

31 tháng 7 2023

Ta có:

\(\dfrac{1}{2\times2}+\dfrac{1}{3\times3}+\dfrac{1}{4\times4}+...+\dfrac{1}{2009\times2009}< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{2008\times2009}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}=1-\dfrac{1}{2009}< 1\)

11 tháng 8 2016

 Ta có : 1/[n x (n - 1)] = [(n - 1) - n] / [n x (n - 1)] = 1/n - 1/(n - 1) 
Áp dụng : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) 
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/48 - 1/49 + 1/49 - 1/50 
= 1 - 1/50 < 1 
Vậy : 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Ta có : 1/(n x n) < 1/[(n - 1) x n] 
1/(2x2) < 1/(1x2) 
1/(3x3) < 1/(2x3) 
1/(4x4) < 1/(3x4) 
............. 
1/(49x49) < 1/(49x49) 
1/(50x50) < 1/(49x50) 
=> 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1/(1x2) + 1/(2x3) + 1/(3x4) + ... + 1/(48x49) + 1/(49x50) < 1 
Vậy 1/(2x2) + 1/(3x3) + 1/(4x4) + ... 1/(49x49) + 1/(50x50) < 1

11 tháng 8 2016

Đặt B=1/1*2+1/2*3+...+1/99*100 

Ta thấy:

A=1/2*2+1/3*3+...+1/100*100<B=1/1*2+1/2*3+...+1/99*100   (1)

Ta lại có: 

B=1/1*2+1/2*3+...+1/99*100 

=1-1/2+1/2-1/3+...+1/99-1/100

=1-1/100<1 (2)

Từ (1) và (2) ta có: A<B<1 <=>A<1

 

4 tháng 8 2020

\(E=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{49.49}\)

Ta có \(\frac{1}{2.2}>\frac{1}{2.3}\)

\(\frac{1}{3.3}>\frac{1}{3.4}\)

...

\(\frac{1}{49.49}>\frac{1}{49.50}\)

=> \(E=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{49.49}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}=\frac{12}{25}=F\)

=> E > F

5 tháng 3 2023

Xyz olm ơi . là j vậy

đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+\frac{1}{7.7}+\frac{1}{8.8}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=1-\frac{1}{8}<1\)

vậy \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+\frac{1}{7.7}+\frac{1}{8.8}<1\)

18 tháng 10 2018

a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)

có :

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

...

\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)

nên :

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(\Rightarrow A< 1-\frac{1}{2011}\)

\(\Rightarrow A< \frac{2010}{2011}< 1\)

b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\) 

\(\frac{3}{4}=1-\frac{1}{4}\)

\(\frac{1}{4}>\frac{1}{2011}\)

nên :

\(A>\frac{3}{4}\)

19 tháng 3 2020

a, A bé hơn 1

b, A bé hơn 3/4

7 tháng 8 2018

ai nhanh nhất mình tk cho

7 tháng 8 2018

cămmon

25 tháng 9 2021

help me!!!