cho đa thức A(x) = ax2 + bx + c. Cho biết 5a + b + 2c = 0. Chứng minh A(2) . A(-1) <_ 0
Chú thích <_ là dấu nhỏ hơn hoặc bằng vì mình ko tìm thấy kí hiệu ấy nên viết tạm thế
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)
\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)
\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)
cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c =0 chứng minh rằng Q(2)
b)biết Q(x)=0 với mọi x CM a=b=c=0
a,Q(2) = 4a+2b+c
Q(-1)=a-b+c
Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c
mà 5a+b+2c=0 => Q(2)=-Q(-1)
Nên Q(2).Q(-1)≤≤0 b)Vì Q(x)=0 với mọi x nên ta có:
Q(0)= 0.a+b.0+c=0=> c=0(1)
Q(1)= a+b+c=0 mà c=0 => a+b=0(2)
Q(-1)=a-b+c=0 mà c=0 => a-b=0(3)
từ (1) và (2) => a=b=c=0 khi Q(x)=0 với mọi x
a,Q(2) = 4a+2b+c
Q(-1)=a-b+c
Ta có: Q(2)+Q(-1)= 4a+2b+c+a-b+c=5a+b+2c
mà 5a+b+2c=0 => Q(2)=-Q(-1)
Nên Q(2).Q(-1)≤≤0
b)Vì Q(x)=0 với mọi x nên ta có:
Q(0)= 0.a+b.0+c=0=> c=0(1)
Q(1)= a+b+c=0 mà c=0 => a+b=0(2)
Q(-1)=a-b+c=0 mà c=0 => a-b=0(3)
từ (1) và (2) => a=b=c=0 khi Q(x)=0 với mọi x
\(Q\left(2\right)=4a+2b+c\)
\(Q\left(-1\right)=a-b+c\)
\(Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Leftrightarrow Q\left(2\right)=-Q\left(-1\right)\)
\(Q\left(2\right).Q\left(-1\right)=-Q\left(-1\right)^2\le0\)
tổng băng 0 suy ra A(-1)=A(2)=0 hoặc A(2)>0 và A(-1)<0; ngược lại
suy ra tích hai số sẽ <=0
A(2)= 4a + 2b + c
A(-1)= a - b +c
A(2)+A(-1)=5a + b +2c = 0
...