K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(B=9x-3x^2=-3\times\left(x^2-2\times x\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right)=-3\times\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\)

\(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

\(-3\times\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]\le\frac{27}{4}\)

Vậy Max B = \(\frac{27}{4}\) khi x = \(\frac{3}{2}\)

\(B=9x-3x^2\)

\(=3\left(x^2-2x\right)\)

\(=3\left(x^2-2x+1-1\right)\)

\(=-3+3\left(x-1\right)^2\ge-3\)

Max \(B=-3\Leftrightarrow x-1=0\Rightarrow x=1\)

16 tháng 12 2015

Vì |y + 3| luôn lớn bằng 0 với mọi y

=> 100 - |y + 3| luôn bé bằng 0

=> B luôn bé bằng 0

Dấu "=" xảy ra <=> |y + 3| = 0

=> y + 3 = 0

=> y = -3

Vậy Max B = 100 tại y = -3

16 tháng 12 2015

Ta có - |y - 3| < 0

=> B = 100 - |y - 3| < 100

GTLN của B là 100 <=> |y - 3| = 0 <=> y = 3

31 tháng 10 2015

1.ta có: 7x-2x^2=-2(x^2-7/2x)

                       =-2(x^2-2*7/4x+49/16-49/16)

                       =-2(x-7/4)^2+49/8 <=49/8

Dấu bằng xáy ra <=> x=7/4

Vậy max=49/8 <=> x=7/4

 

24 tháng 2 2019

x+y=1

<=> x=1-y

<=>P=(1-y)y=\(y-y^2\)

<=>P=\(\frac{1}{4}-\left(y^2-y+\frac{1}{4}\right)\)

<=>P=\(\frac{1}{4}-\left(y-\frac{1}{2}\right)^2\le\frac{1}{4}\)

=>Max của P=\(\frac{1}{4}\)<=>y=\(\frac{1}{2}\)

24 tháng 2 2019

x+y=1

\(\Rightarrow x=1-y\)

\(\Rightarrow P=x.y=\left(1-y\right).y=y-y^2=-\left(y^2-y\right)\)

\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)

\(\Rightarrow P=-\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì :\(\left(y-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-\left(y-\frac{1}{2}\right)^2\le0\)

\(\Rightarrow P\le\frac{1}{4}\)

\(\Rightarrow GTLN\)của\(P=\frac{1}{4}\)khi : \(y=\frac{1}{2}\)

\(\Rightarrow x=1-\frac{1}{2}=\frac{1}{2}\)

27 tháng 8 2016

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

27 tháng 8 2016

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0