K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

1. Ta có:1x2x3=6 chia hết cho 6

             2x3x4 chia hết cho 6...

Vì vậy có thể CMR liên tiếp chia hết cho 6

2: Cũng như vậy

6 tháng 4 2018
  1. 3 số tự nhiên liên tiếp sẽ tồn tại ít nhất 1 số chia hết cho 2, một số chia hết cho 3 nên tích chia hết cho 2*3=6
  2. 4 số tự nhiên liên tiếp sẽ tồn tại 2 số chẵn liên tiếp. Mà 2 số chẵn liên tiếp thì có một số chia hết cho 4 số kia chia hết cho 2

nên tích chia hết cho 4*2=8

tk mình nha

20 tháng 3 2016

a) Trong ba số tự nhiên liên tiếp có một số chia hết cho 1, một số chia hết cho 2 và một số chia hết cho 3 nên tích của ba số đó chia hết cho 1x2x3=6

20 tháng 3 2016

b) Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1) 
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2) 
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8. 
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3) 
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau 
=> a chia hết cho (b.c) 
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1

21 tháng 11 2014

đâu phải tích của 2 số đều chia hết cho 2 đâu

21 tháng 11 2014

sao tích 2 số tự nhiên lại chia hết cho 2 . VD 3*5 =15 đâu chia hết cho 2. đúng ra phải là 2 số tự nhiên liên tiếp chứ!!!

11 tháng 11 2018

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6

6 tháng 8 2023

a) 3 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right)\)

Ta có \(\Rightarrow n\left(n+1\right)\left(n+2\right)\) trong 3 số sẽ có 1 số chia hết cho 3

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\Rightarrow dpcm\)

b) 5 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right);\left(n+3\right);\left(n+4\right)\)

mà trong 5 số này có số chia hết cho 2;4;3;5 và 2.4=8

⇒ Tích 5 số này chia hết cho 3,5,8 \(\left[UCLN\left(3;5;8\right)=1\right]\)

⇒ Tích 5 số này chia hết cho tích của 3,5,8

mà \(3.5.8=120\)

\(\Rightarrow dpcm\)

 

6 tháng 8 2023

c) 3 số chẵn liên tiếp là \(2n;2n+2;2n+4\)

Ta có \(2n\left(2n+2\right)\left(2n+4\right)\)

\(=2.2.2n\left(n+1\right)\left(n+2\right)\)

\(=8n\left(n+1\right)\left(n+2\right)⋮8\left(1\right)\)

Ta lại có  \(\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)⋮3\\n\left(n+1\right)⋮2\end{matrix}\right.\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow8n\left(n+1\right)\left(n+2\right)⋮48\)

\(\Rightarrow dpcm\)

22 tháng 2 2020

a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3 
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5

chúc bạn học tốt !!!

a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2

Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
 +Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
 +Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
 +Nếu a chia hết cho 3 => T chia hết cho 3
 +Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
 +Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau 
=> T chia hết cho 2.3 = 6

3 tháng 5 2022

a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2

ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3

vì 3a chia hết cho3 , 3 chia hết cho 3 

suy ra ba số tự nhiên liên tiếp chia hết cho 3

 

b,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4

ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia

 hết cho 5

vì 5a chia hết cho 5 ,10 chia hết cho 5

suy ra năm số tự nhiên lien tiếp chia hết cho5

Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1

mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1⇒⇒tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1

2 tháng 1 2020

 Gọi 5 số tự nhiên liên tiếp đó là : a , a + 1 , a + 2 , a + 3 , a + 4 .

Theo bài ra , ta có :  

   a x ( a + 1 ) x ( a + 2 ) x ( a + 3 ) x ( a + 4 )

= a x 5 x ( 1 x 2 x 3 x 4 )

= a x 5 x 24

Mà 5 x 24 = 120 . 

=> a chia hết cho 120 .

_ Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120 .

2 tháng 1 2020

a)gọi 4 stn liên tiêps là a, a+1, a+2, a+3

có: axa+1xa+2xa+3

ax4x(1x2x3)

ax4x6

ax24

=> a chia hết cho 24