Một cái bơm chứa 20 cm3 không khí ở nhiệt độ 170C và áp suất 2.105 Pa. Khi không khí bị nén xuống còn 10 cm3 và nhiệt độ tăng lên tới 1270 C thì áp suất của không khí trong bơm là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T1 = 27 + 273 = 300K
T2 = 327 + 273 = 600K
Phương trình trạng thái khí lí tưởng:
\(\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}\Rightarrow\dfrac{10^5.120}{300}=\dfrac{P_2.20}{600}\Leftrightarrow\dfrac{12000000}{300}=\dfrac{20P_2}{600}\)
=> 20P2 = 24000000
=> P2 = 1200000Pa
phương trình trạng thái lí tưởng:
\(\dfrac{P_1.V_1}{T_1}=\dfrac{P_2.V_2}{T2}\)
Theo đề bài:
V1 = 120cm3; T1 = 27 + 273 = 300K ; P1 = \(10^5\)Pa
V2 = 20cm3; T2 = 327 + 273 = 600K
Thay vào phương trình:
\(\dfrac{10^5.120}{300}=\dfrac{P_2.20}{600}\Rightarrow P_2=\dfrac{P_1.T_2.V_2}{V_2.T_1}=1200000Pa\)
=12.10^5 Pa
\(\left\{{}\begin{matrix}p_1=10^5Pa\\V_1=80cm^3\\T_1=300^oK\end{matrix}\right.\\ \left\{{}\begin{matrix}p_2=?\\V_2=20cm^3\\T_2=600^oK\end{matrix}\right.\\ \dfrac{p_1V_1}{T_1}=\dfrac{p_2V_2}{T_2}\Leftrightarrow\dfrac{10^5.80}{300}=\dfrac{p_2.20}{600}\\ \Rightarrow p_2=8.10^5Pa\)
1/ Quá trình biến đổi trạng thái khi thể tích không đổi gọi là đẳng tích
Định luật: Trong quá trình đẳng tích của một lượng khí nhất định, áp suất tỉ lệ thuận với nhiệt độ tuyệt đối
Biểu thức:
\(\frac{P}{T}=\) hằng số
+Lưu ý: Nếu gọi \(P_1,T_1\) là áp suất và nhiệt độ tuyệt đối của 1 lượng khí ở trạng thái 1
Nếu gọi \(P_2,T_2\) là áp suất và nhiệt độ tuyệt đối của 1 lượng khí ở trạng thái 2
Ta có biểu thức: \(\frac{P_1}{T_1}=\frac{P_2}{T_2}\)
2/ Phương trình trạng thái khí lí tưởng:
\(\frac{p_1V_1}{T_1}=\frac{p_2V_2}{T_2}\)
Tính ra \(p_2=2,58atm\)
Đáp án A.
p 1 V 1 = p 2 V 2 ⇒ 10 5 0 , 125.20.2 , 5 = p 2 .2 , 5 ⇒ p 2 = 2.10 5 P a
Đáp án: C
Ta có:
Thể tích khí bơm được sau 20 lần bơm là 20.0,125 lít
+ Thể tích của không khí trước khi bơm vào bóng: V 1 = 20.0,125 + 2,5 = 5 l (Bao gồm thể tích khí của 20 lần bơm và thể tích khí của khí có sẵn trong bóng)
+ Sau khi bơm khí vào trong bóng thể tích lượng khí chính bằng thể tích của bóng: V 2 = 2,5 l
Do nhiệt đọ không đổi, theo định luật Bôi lơ – Ma ri ốt, ta có:
p 1 V 1 = p 2 V 2 ⇔ 10 5 .5 = p 2 .2,5 ⇒ p 2 = 2.10 5 P a
cu ap dung cong thuc la ra, giai:
Xét lượng khí trong xi lanh.
Áp dụng định luật Bôilơ – Mariốt ta có:
\(p_1V_1=p_2V_2\Rightarrow p_2=\dfrac{p_1V_1}{V_2}=\dfrac{3.10^5.200}{100}=600000\left(Pa\right)\)
Trạng thái 1: \(\left\{{}\begin{matrix}p_1=2\cdot10^5Pa\\V_1=20cm^3\\T_1=17^oC=290K\end{matrix}\right.\)
Trạng thái 2: \(\left\{{}\begin{matrix}p_2=???\\V_2=10cm^3\\T_2=127^oC=400K\end{matrix}\right.\)
Quá trình khí lí tưởng:
\(\dfrac{p_1V_1}{T_1}=\dfrac{p_2V_2}{T_2}\Rightarrow\dfrac{20\cdot2\cdot10^5}{290}=\dfrac{p_2\cdot10}{400}\)
\(\Rightarrow p_2=5517241,4Pa\)