chứng minh rằng : S=1/1.2+1/2.3+...+1/2014.2015<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2015.2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
Có: \(\frac{7}{12}=0,58\left(3\right);\frac{99}{100}=0,99;\frac{5}{6}=0,8\left(3\right)\)
Và: \(0,58< 0,99>0,8\left(3\right)\) ( đề sai bạn ơi )
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Vì \(\frac{245}{420}< \frac{245}{294}< \frac{245}{250}\)
Vậy \(\frac{7}{12}< \frac{49}{50}< \frac{5}{6}\)
Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\); \(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); \(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)
=> \(S< \frac{3}{4}\)
A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)
\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -
( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))
\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1
Vậy: A < 1
\(\frac{1}{2}\)
B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )
= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)
\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2
Vậy: B < 2
ta có: \(\frac{1}{1.2}>0;\frac{1}{2.3}>0;...;\frac{1}{n.\left(n+1\right)}>0\)
\(\Rightarrow S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}>0\)
ta có: \(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(S=1-\frac{1}{n+1}< 1\)
=> 0 < S < 1
=> S không phải là số tự nhiên
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}\)
\(S=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2015-2014}{2014.2015}\)
\(S=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{2015}{2014.2015}-\frac{2014}{2014.2015}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(S=1-\frac{1}{2015}=\frac{2014}{2015}\)
\(\Rightarrow S<1\)