Chứng minh rằng:
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}=\frac{15}{14}>1\left(1\right)\)
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}<\frac{20}{10}=2\left(2\right)\)
\(\RightarrowĐPCM\)
S=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{4}{10}+\frac{4}{10}+\frac{4}{10}+\frac{4}{10}+\frac{4}{10}\)
=\(\frac{4}{10}\cdot5=2=>S<2\)
S=\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
=\(\frac{3}{15}\cdot5=1=>S>1\)
Vậy 1<S<2
nhớ k với nhé
Ta có:\(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}.5=\frac{15}{15}=1\)(1)
Mặt khác:\(\frac{3}{10}=\frac{3}{10};\frac{3}{11}<\frac{3}{10};\frac{3}{12}<\frac{3}{10};\frac{3}{13}<\frac{3}{10};\frac{3}{14}<\frac{3}{10}\)
=>\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{3}{10}.5=\frac{15}{10}<\frac{20}{10}=2\)(2)
Từ (1) và (2)
=>\(1<\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<2\)(ĐPCM)
3/10+3/11+3/12+3/13+3/14>3/15+3/15+3/15+3/15+3/15=15/15=1
mặt khác: 3/10+3/11+3/12+3/13+3/14<3/10+3/10+3/10+3/10+3/10=15/10<20/10=2
Vậy: 1<S<2
Mỗi số ahjng trong S đều lớn hơn \(\frac{3}{15}\) mà S có 5 số hạng nên :
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}.5=\frac{15}{15}=1\)
Vậy S > 1 hay 1 < S (1)
Mỗi số hạng trong S đều nhỏ hơn \(\frac{4}{10}\) mà S có 5 số hạng nên :
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{4}{10}.5=\frac{20}{10}=2\)
Vậy S < 2 (2)
Từ (1) và (2) suy ra 1 < S < 2 (điều phải chứng minh)
+ Ta có 3/10>3/15; 3/11>3/15; 3/12>3/15; 3/13>3/15; 3/14>3/15
=> S> 3/15+3/15+3/15+3/15+3/15=15/15=1
+ Ta có 3/10<3/8; 3/11<3/8; 3/12<3/8; 3/13<3/8; 3/14<3/8
=> S<3/8+3/8+3/8+3/8+3/8=15/8<2
=> 1<S<2
\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
mà \(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(\Rightarrow\frac{3}{10}+\frac{3}{11}+\frac{3}{13}+\frac{3}{14}>1\) (1)
mà \(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}< \frac{20}{10}=2\)
\(\Rightarrow\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< 2\) (1)
Từ (1) và (2) => 1<S<2
Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{3}+\frac{4}{12}=\frac{2}{3}..\)