Cho A=6n- 1/ 3n+2; Tìm số nguyên n để A có giá trị là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(6n-1)/(3n+2) = 2/3
<=> 3(6n-1)=2(3n+2)
<=> 18n-3=6n+4
<=> 12n=7 => n=7/2
Đs: n=7/2
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
Để A thuộc Z
=> 6n - 1 chia hết cho 3n + 2
6n + 4 - 4 - 1 chia hết cho 3n + 2
2.(3n + 2) - 5 chia hết cho 3n + 2
=> 5 chia hết cho 3n + 2
=> 3n + 2 thuộc Ư(5) = {1 ; -1; 5 ; -5}
Ta có bảng sau :
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 | -1 | 1 | -7/3 |
Để A thuộc Z thì 6n-1 phải chia hết cho 3n+2
suy ra 6n+4-5 sẽ chia hết cho 3n+2
mà 6n+4 chia hết cho 3n+2
suy ra 5 chia hết cho 3n+2
suy ra 3n+2 thuộc tập hợp có:-5;-1;1;5
suy ra 3n thuộc tập hợp có -7;-3;-2;3
vậy n thuộc tập hợp có 2 phần tử là -1;1
1) \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)là số nguyên khi \(\frac{5}{3n+2}\)là số nguyên
suy ra \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-\frac{7}{3},-1,-\frac{1}{3},1\right\}\)mà \(n\)nguyên suy ra
\(n\in\left\{-1,1\right\}\).
\(\Rightarrow\)(6n-1)chc(3n+2)
Mà (6n+4)chc(3n+2)
\(\Rightarrow\) (6n+4-6n+1)chc(3n+2)\(\Rightarrow\)5 chc(3n+2)
Lập bảng để suy ra n{-1,1}
Vay 6n-1 chia het cho 3n+2
2(3n+2)-5 chia het cho 3n+2
Ma 2(3n+2)chia het cho 3n+2 nen -5 chia het cho 3n+2
=>3n+2 thuoc Ư(-5)={1;-1;5;-5}
Sau do ban thay 3n+2 vao la tim duoc n (neu thu khong ra so nguyen thi ban loai)