K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=1/101+1/102+...+1/200

=>S>1/200+1/200+...+1/200=100/200=1/2

S=1/101+1/102+...+1/200

=>S<1/100+1/100+...+1/100=100/100=1

=>1/2<S<1

21 tháng 9 2023

biểu thức AB.101=

25 tháng 3 2022

Ta có: S=1/101 > 1/200

1/102 > 1/200

1/103 > 1/200

........

1/199 > 1/200

1/200 = 1/200

=>1/101 +1/102 +1/103 +.... +1/199 +1/200 > 1/200 + 1/200 +1/200 +..... +1/200

=>1/101 + 1/102 +1/103 +..... +1/200 > 1/200x100 = 1/2

Vậy biểu thức đã cho S > 1/2 

 

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

\(=\left(\frac{1}{101}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+...+\frac{1}{200}\right)>\frac{1}{150}+...+\frac{1}{150}+\frac{1}{200}+...+\frac{1}{200}\)(50 số 1/150;1/200)

\(=\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

=>đpcm

AH
Akai Haruma
Giáo viên
10 tháng 5 2023

Lời giải:

Dễ dàng thấy $S>0$

Mặt khác:
$S=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}< \frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}<1$
Vậy $0< S< 1$ nên $S$ không phải số nguyên.

10 tháng 5 2023

     Hôm nay olm sẽ hướng dẫn các em  giải dạng chứng minh một số không phải là một số nguyên thì các em cần sử dụng nguyên lý kẹp em nhé.  Em cần chứng minh a < S < a + 1 ( a \(\in\) Z)

  Sau đó em lập luận vì S nằm giữa hai số nguyên liên tiếp nên S không phải là số nguyên vì không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.

                                          Giải:

S = \(\dfrac{1}{101}\) + \(\dfrac{1}{102}\)\(\dfrac{1}{103}\)+ ...+ \(\dfrac{1}{200}\) 

Xét dãy số: 101; 102;...; 200 có số số hạng là (200 - 101):1+1= 100

Mặt khác ta cũng có \(\dfrac{1}{101}\)\(\dfrac{1}{102}\)\(\dfrac{1}{103}\)> ...> \(\dfrac{1}{200}\) 

⇒ \(\dfrac{1}{101}\) \(\times\) 100 > \(\dfrac{1}{101}\)\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\) > \(\dfrac{1}{200}\) \(\times\) 100

⇒ \(\dfrac{100}{101}\) >  S  > \(\dfrac{100}{200}\)⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{1}{2}\) ⇒   1 > S > 0 ⇒ S \(\notin\) Z (đpcm)

Vì 0 và 1 là hai số nguyên dương liên tiếp nên S không phải là số nguyên do không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.

 

 

 

18 tháng 6 2017

Chưa hiểu lắm đề câu 1 :v thôi làm tạm câu 2 nhé (sửa lại đề câu 1 đi -_-)

Ta có : $\dfrac{1}{101}<\dfrac{1}{100};\dfrac{1}{102}<\dfrac{1}{100};...;\dfrac{1}{200}<\dfrac{1}{100}$

Vì A có 100 phân số : $(200-101):1+1=100$

$=>A<\dfrac{1}{100}.100=1$

18 tháng 6 2017

1/ \(\dfrac{1}{101}>\dfrac{1}{102};...;\dfrac{1}{101}>\dfrac{1}{200}\)

2/ Ta có: \(\left\{{}\begin{matrix}\dfrac{1}{101}< \dfrac{1}{100}\\...\\\dfrac{1}{200}< \dfrac{1}{100}\end{matrix}\right.\Rightarrow A=\dfrac{1}{101}+...+\dfrac{1}{200}< \dfrac{1}{100}+...+\dfrac{1}{100}\)

( 100 phân số \(\dfrac{1}{100}\) )

\(\Rightarrow A< \dfrac{1}{100}.100=1\)

\(\Rightarrowđpcm\)

11 tháng 7 2015

S = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)+\left(\frac{1}{111}+...+\frac{1}{120}\right)+\left(\frac{1}{121}+...+\frac{1}{130}\right)\)

>  \(\frac{1}{110}.10+\frac{1}{120}.10+\frac{1}{130}.10=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}>\frac{1}{12}+\frac{2}{12}=\frac{1}{4}\) (Dễ có: \(\frac{1}{11}+\frac{1}{13}>\frac{2}{12}\))

=> S > \(\frac{1}{4}\) (1)

+) S = \(\left(\frac{1}{101}+\frac{1}{130}\right)+\left(\frac{1}{102}+\frac{1}{129}\right)+...+\left(\frac{1}{115}+\frac{1}{116}\right)\) (Có 15 cặp)

\(\frac{231}{101.130}+\frac{231}{102.129}+...+\frac{231}{115.116}=231.\left(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}\right)\)

ta có nhận xét: tích 101.130 có giá trị nhỏ nhất. thật vậy:

Xét 102.129 = (101 + 1).(130 - 1) = 101.130 - 101 + 130 -1 = 101.130 + 28 > 101.130

Tương tự, các cặp còn lại . Do đó, ta có \(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}<\frac{1}{101.130}.15\)

=> S < \(231.\frac{1}{101.130}.15=\frac{693}{2626}<\frac{91}{330}\)(2)

Từ (1)(2) => đpcm

9 tháng 2 2018

Sao bạn học giỏi thế? 

3 tháng 5 2019

b) Ta có: \(\frac{1}{101}>0\)

              \(\frac{1}{102}>0\)

                ...............,....

                 \(\frac{1}{200}>0\)

\(\Rightarrow S>0\left(1\right)\)

Lại có: \(\frac{1}{101}< \frac{1}{100}\)

             \(\frac{1}{102}< \frac{1}{100}\)

               ......................

             \(\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow S< \frac{1}{100}.100\)

\(\Rightarrow S< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< S< 1\)

Vậy S ko là   số tự nhiên

3 tháng 5 2019

a, ta có 1/101<1/100; 1/102<1/100;...;1/109<1/100

=> S=1/101+1/102+...+1/109< 1/100+1/100+...+1/100=9/100

=>S<9/100

b,ta thấy S luôn >0

S=1/101+1/102+...+1/200<1/100+1/100+...+1/100=1

=>S<1

=>0<S<1 => S không phải số tự nhiên