(3x-5)100+(2y+1)200<0
5n +5n+2=650
32-n.3n+5.3n-1=162
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)
\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vì số mũ của 2 số trên là 100 và 200, đều là số chẵn => Không số nào trong số trên là số âm => Tổng của chúng là số vô âm => Tổng của chúng = 0 => Các hiệu (3x-5) và tổng (2y+1) = 0
=> 3x - 5 = 0 => 3x = 5 => x = 5/3
=> 2y + 1 = 0 => 2y = -1 => y = -0,5
Vậy x = 5/3 và y = -0,5
<Spyofgame200 - NO COPPY>
Có: (3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2(3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2 \geq 00
\Rightarrow BPT có nghiệm \Leftrightarrow {3x−5=02y+1=0{3x−5=02y+1=0 \Rightarrow {x=53y=−12{x=53y=−12
Vì \(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+1\right)^{200}\ge0\end{cases}\Rightarrow\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\ge0}\)
Theo đề bài:\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)
=>\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}=0\)
=>\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+1\right)^{200}=0\end{cases}}\)
=>\(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-1}{2}\end{cases}}\)
Vậy \(x=\frac{5}{3}\) và \(y=\frac{-1}{2}\)
Vì mũ của số trên là 100 và 200, đều là số chẵn
Không số nào trong số trên là số âm
Tổng là số vô âm
Tổng của chúng bằng 0
Các hiệu: (3x - 5) ; Các tổng: (2y + 1)
\(\Rightarrow3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
\(\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=-0,5\)
Vậy: \(x=\frac{5}{3};y=-0,5\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)
Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)