\(\le\)0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Vì số mũ của 2 số trên là 100 và 200, đều là số chẵn => Không số nào trong số trên là số âm => Tổng của chúng là số vô âm => Tổng của chúng = 0 => Các hiệu (3x-5) và tổng (2y+1) = 0 
=> 3x - 5 = 0 => 3x = 5 => x = 5/3
=> 2y + 1 = 0 => 2y = -1 => y = -0,5

Vậy x = 5/3 và y = -0,5
<Spyofgame200 - NO COPPY>

23 tháng 7 2019

Bài 1 nghĩa là 5x = 2y và \(x^3\cdot y^2=200\)à???

23 tháng 7 2019

1) Ta có: 5x = 2y = x/2 = y/5 

Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=2k\\y=5k\end{cases}}\) (*)

Khi đó, ta có: x3y2 = 200

=> (2k)3.(5k)2 = 200

=> 8k3 . 25k2 = 200

=> 200k5 = 200

=> k5 = 1

=> k = 1

Thay k = 1 vào (*), ta được:

+) x = 2.1 = 2

+) y = 5.1 = 5

Vậy ...

22 tháng 7 2016

Có: (3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2(3x−5)100+(2x+1)200=((3x−5)50)2+((2x+1)100)2 \geq 00
\Rightarrow BPT có nghiệm \Leftrightarrow {3x−5=02y+1=0{3x−5=02y+1=0 \Rightarrow {x=53y=−12{x=53y=−12

22 tháng 7 2016

Vì \(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+1\right)^{200}\ge0\end{cases}\Rightarrow\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\ge0}\)

Theo đề bài:\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}\le0\)

=>\(\left(3x-5\right)^{100}+\left(2y+1\right)^{200}=0\)

=>\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+1\right)^{200}=0\end{cases}}\)

=>\(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\)

=>\(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\)

=>\(\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-1}{2}\end{cases}}\)

Vậy \(x=\frac{5}{3}\) và \(y=\frac{-1}{2}\)

12 tháng 2 2017

Bài 1:

a) \(\left(3x-\frac{4}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)

\(\Rightarrow\left\{\begin{matrix}3x-\frac{4}{5}=0\\2y+\frac{3}{7}=0\end{matrix}\right.\rightarrow\left\{\begin{matrix}3x=\frac{4}{5}\\2y=-\frac{3}{7}\end{matrix}\right.\rightarrow\left\{\begin{matrix}x=\frac{4}{15}\\y=-\frac{3}{14}\end{matrix}\right.\)

19 tháng 3 2020

Bang Xz jskksjjmdkjehjiffd

13 tháng 6 2018

Với mọi x,y ta có :

\(\left(\frac{3x+5}{9}\right)^{100}\ge0\)

\(\left(\frac{3y+0,4}{3}\right)^{102}\ge0\)

\(\Leftrightarrow\left(\frac{3x+5}{9}\right)^{100}+\left(\frac{3y+0,4}{3}\right)^{102}\ge0\)

Lại có : \(\left(\frac{3x+5}{9}\right)^{100}+\left(\frac{3y+0,4}{3}\right)^{102}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\frac{3x+5}{9}\right)^{100}=0\\\left(\frac{3y+0,4}{3}\right)^{102}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3x+5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+5=0\\3y+0,4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{0,4}{3}\end{cases}}\)

Vậy ..

12 tháng 10 2017

\(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}\Leftrightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x^2}{18}=\dfrac{y^2}{16}=\dfrac{2x^2+y^2}{18+16}=\dfrac{136}{34}=4\)

Suy ra: \(\left\{{}\begin{matrix}x^2=4.9=36\\y^2=4.16=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm6\\y=\pm8\end{matrix}\right.\)

2) Ta có: \(2^{20}=\left(2^4\right)^5=16^5\)

Được biết số có tận cùng là \(6\) thì lũy thừa bao nhiêu cũng bằng \(6\)

Nên \(16^5=\overline{...6}\Leftrightarrow16^5-1=\overline{.....5}⋮5\)

Nên \(\dfrac{2^{20}-1}{5}\) là số nguyên

3)

Ta có:

\(A=100^2+200^2+...+1000^2\)

\(A=\left(1.100\right)^2+\left(2.100\right)^2+...+\left(10.100\right)^2\)

\(A=1^2.100^2+2^2.100^2+....+10^2.100^2\)

\(A=100^2\left(1^2+2^2+...+100^2\right)\)

\(A=10000.385=3850000\)