K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2022

thay x=-1;y=3 vào biểu thức B ta đc

B=(-1)2.32+(-1).3+(-1)2+32

B=9+(-3)+(-1)+9

B=14

23 tháng 3 2022

b/ Tại \(x=-1;y=3\) ta có 

B= \(\left(-1\right)^2.\left(3\right)^2+\left(-1\right).3+\left(-1\right)^3+\left(3\right)^3\)

B= \(1.9+\left(-3\right)+\left(-1\right)+27\)

B= \(9+\left(-3\right)+\left(-1\right)+27\)

B=  32

8 tháng 5 2020
https://i.imgur.com/9C6VYPl.jpg
13 tháng 8 2021

B=x2y2+xy+x3+y3

Thay x=-1, y=3 ta có:

B=x2y2+xy+x3+y3

  =(-1)2.32+(-1).3+(-1)3+33

  = 1.9-3-1+27

  = 9-3-1+27

  = 32

13 tháng 8 2021

 giá trị biểu thức tại x = –1; y = 3 là:

\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\\B=9-3-1+27\\ B=32 \)

 

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

30 tháng 5 2017

Khi x = - 1; y = 1 thì xy = (-1).1= -1

Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6

= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6

= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6

= -1 – 1 + (-1) – 1 + (-1) – 1

= - 6

Chọn đáp án D

3 tháng 8 2021

D đúng nha!

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé

20 tháng 7 2023

Bài 6:

M= 2.2 - 2.3+3.2.3

M= 4 - 6 + 18

M= 20

Bài 7: 

P= 1.2 - 5.-1.-2 + 8.-2.2

P = 2 -10 -32

P= -44

Bài 8:

A (thiếu dữ kiện bn ơi)

B= -1.2 . 3.2 + -1.3 +3.3 +-1.3

B= -2 . 6 + -3 + 9 +-3

B= -2 . 6 - 3 + 9 - 3

B= -12 - 3 + 9 - 3

B= -9

17 tháng 7 2023

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(xy+yz+xz\right)=a^2+b\)

\(\Rightarrow xy+yz+xz=\dfrac{a^2+b}{2}\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\Rightarrow\dfrac{xy+yz+xz}{xyz}=\dfrac{1}{c}\)

\(\Rightarrow xyz=c\left(xy+yz+xz\right)\)

\(\Rightarrow xyz=\dfrac{\left(a^2+b\right)c}{2}\)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-\left(xy+yz+xz\right)\right)+3xyz\)

\(\Rightarrow x^3+y^3+z^3=a\left(b-\dfrac{a^2+b}{2}\right)+3\dfrac{\left(a^2+b\right)c}{2}\)

\(\Rightarrow x^3+y^3+z^3=a\dfrac{\left(b-a^2\right)}{2}+3\dfrac{\left(a^2+b\right)c}{2}\)

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

29 tháng 8 2023

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)