\(-2\frac{1}{5}\&\frac{110}{-50};\frac{17}{20}\&0,75\)
so sánh số hữu tỉ giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
\(\frac{5}{7}\times\frac{1}{3}-\frac{5}{7}\times\frac{1}{4}-\frac{5}{7}\times\frac{1}{2}\)
\(=\frac{5}{7}\times\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right)\)
\(=\frac{5}{7}\times\left(\frac{4}{12}-\frac{3}{12}-\frac{6}{12}\right)\)
\(=\frac{5}{7}\times\left(\frac{4-3-6}{12}\right)\)
\(=\frac{5}{7}\times\frac{-5}{12}\)
\(=\frac{5\times\left(-5\right)}{7\times12}\)
\(=\frac{-25}{84}\)
\(\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{2}\)
= \(\frac{5}{7}.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right).1\)
\(=\frac{5}{7}.\frac{-5}{12}\)
\(=-\frac{25}{84}\)
a)
\(\begin{array}{l}1\frac{1}{2} + \frac{1}{5}.\left[ {\left( { - 2\frac{5}{6} + \frac{1}{3}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\left[ {\left( { - \frac{{17}}{6} + \frac{2}{6}} \right)} \right]\\ = \frac{3}{2} + \frac{1}{5}.\frac{{ - 15}}{6}\\ = \frac{3}{2} + \frac{{ - 1}}{2}\\ = \frac{2}{2}\\=1\end{array}\)
b)
\(\begin{array}{l}\frac{1}{3}.\left( {\frac{2}{5} - \frac{1}{2}} \right):{\left( {\frac{1}{6} - \frac{1}{5}} \right)^2}\\ = \frac{1}{3}.\left( {\frac{4}{{10}} - \frac{5}{{10}}} \right):{\left( {\frac{5}{{30}} - \frac{6}{{30}}} \right)^2}\\ = \frac{1}{3}.\frac{{ - 1}}{{10}}:{\left( {\frac{{ - 1}}{{30}}} \right)^2}\\ = \frac{{ - 1}}{{30}}:\frac{1}{{{{30}^2}}}\\ = \frac{{ - 1}}{{30}}{.30^2}\\ = - 30\end{array}\)
Khi \(n=1\to A=\frac{1}{5S_1^2}=\frac{5}{36}<\frac{35}{36}.\) Ta xét trường hợp \(n\ge2.\)
Theo giả thiết thì \(S_k=S_{k-1}+\frac{1}{5^k}>S_{k-1}\to S^2_k>S_k\cdot S_{k-1}\).
Vậy ta có \(\frac{1}{5^kS_k^2}<\frac{1}{5^kS_kS_{k-1}}=\frac{S_k-S_{k-1}}{S_kS_{k-1}}=\frac{1}{S_{k-1}}-\frac{1}{S_k}.\) Cho \(k=2,3,\ldots,n\) rồi cộng lại ta được
\(A<\frac{1}{5S_1^2}+\left(\frac{1}{S_1}-\frac{1}{S_2}\right)+\left(\frac{1}{S_2}-\frac{1}{S_3}\right)+\cdots+\left(\frac{1}{S_{n-1}}-\frac{1}{S_n}\right)\)
\(=\frac{1}{5S_1^2}+\frac{1}{S_1}-\frac{1}{S_n}<\frac{1}{5S_1^2}+\frac{1}{S_1}=\frac{5}{36}+\frac{5}{6}=\frac{35}{36}.\) (ĐPCM)
\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)
\(B=1-\frac{1}{2^{2016}}\)
phan kia tuong tu