chứng minh đẳng thức ( x + y ) 3 - ( x - y ) 3 = 2y( 3x2 + y2 )
giúp e với nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)
\(=\left(2x+y\right).3y\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3\)
\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)
\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)
c) \(9x^2-3x+2y-4y^2\)
\(=9x^2-4y^2-3x+2y\)
\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left[3x+2y-1\right]\)
d) \(4x^2-4xy+2x-y+y^2\)
\(=4x^2-4xy+y^2+2x-y\)
\(=\left(2x-y\right)^2+2x-y\)
\(=\left(2x-y\right)\left(2x-y+1\right)\)
e) \(x^3+3x^2+3x+1-y^3\)
\(=\left(x+1\right)^3-y^3\)
\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)
g) \(x^3-2x^2y+xy^2-4x\)
\(=x\left(x^2-2xy+y^2\right)-4x\)
\(=x\left(x-y\right)^2-4x\)
\(=x\left[\left(x-y\right)^2-4\right]\)
\(=x\left(x-y+2\right)\left(x-y-2\right)\)
a) (x + 2y)² - (x - y)²
= (x + 2y - x + y)(x + 2y + x - y)
= 3y(2x + y)
b) (x + 1)³ + (x - 1)³
= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]
= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)
= 2x(x² + 3)
c) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) x³ + 3x² + 3x + 1 - y³
= (x³ + 3x² + 3x + 1) - y³
= (x + 1)³ - y³
= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]
= (x - y + 1)(x² + 2x + 1 + xy + y + y²)
g) x³ - 2x²y + xy² - 4x
= x(x² - 2xy + y² - 4)
= x[(x² - 2xy + y²) - 4]
= x[(x - y)² - 2²]
= x(x - y - 2)(x - y + 2)
Ta có: \(\left(x-y\right)^3+4y\left(2x^2+y^2\right)\)
\(=x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3\)
\(=x^3+5x^2y+3xy^2+3y^3\)
\(=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
Ta có : \(y=e^{-x}\sin x\Rightarrow\begin{cases}y'=-e^{-x}\sin x+e^{-x}\cos x=e^{-x}\left(\cos x-\sin x\right)\\y"=-e^{-x}\left(\cos x-\sin x\right)+e^{-x}\left(-\cos x-\sin x\right)=-2e^{-x}\cos x\end{cases}\)
\(\Rightarrow y"+2y'+2y=-2e^{-x}\cos x+2e^{-x}\left(\cos x-\sin x\right)+2e^{-x}\sin x=0\) => Điều phải chứng minh
a: C=-2x^4+3x^2y-2xy+y^2+7
Bậc là 4
b: B=5x^4-3x^2y+2xy+y^2
D=-2x^4+3x^2y-2xy+y^2+7+5x^4-3x^2y+2xy+y^2
=3x^4+2y^2
E=-2x^4+3x^2y-2xy+y^2+7-5x^4+3x^2y-2xy-y^2
=-7x^4+6x^2y-4xy+7
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)
\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)
a/
\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)
\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn
b/
\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)
\(\Rightarrow\) Không tồn tại x; y thỏa mãn
c/
\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)
Không tồn tại x; y thỏa mãn
x^3 + 3x^2y + 3xy^2 + y^3 - ( x^3 - 3x^2y + 3xy^2 - y^3)
= x^3 + 3x^2y + 3xy^2 + y^3 - x^3 + 3x^2y - 3xy^2 + y^3
= 6x^2y + 2y^3
= 2y( 3x^2 + y^2)
=> ĐPCM
x^3 + 3x^2y + 3xy^2 + y^3 - ( x^3 - 3x^2y + 3xy^2 - y^3)
= x^3 + 3x^2y + 3xy^2 + y^3 - x^3 + 3x^2y - 3xy^2 + y^3
= 6x^2y + 2y^3
= 2y( 3x^2 + y^2)
=> ĐPCM
( x + y ) 3 - ( x - y ) 3 = 2y( 3x2 + y2 )
biến đổi vế trái
x3 + 3x2y+3xy2+y2 - x3 + 3x2y-3xy2+y2=3x2y+3x2y+y3+y3
= 2y(3x2+y2)
vậy vt = vp