K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

Ta có: 1+2+3+...+bc=abc (0 < a ≤9 và 0≤b,c ≤9)

<=> ab ( \(ab\) +1)2 = abc

<=> bc ( bc+1)=2. abc

<=> bc.bc+bc=2(100a+bc)

<=> bc.bc+bc=200a+2bc

<=> bc(bc-1)=200a

Nhận xét: Vế phải là 200a => Số tận cùng là 0.

Vậy vế trái bc.(bc-1) cũng phải có tận cùng là 0 và phải chia hết cho 100.

Có các trường hợp: c = 0, c = 1, c = 5 và c = 6.

Xét từng trường hợp, có: +/ TH1: Với c=0 => b0(b0-1)=200a

<=> 10b(10b-1)=200a <=> b(10b-1)=20a. Không có giá trị của b thỏa mãn để: b(10b-1)⋮10 => Loại

+Trường hợp 2: Với c=1 => b1(b1-1)=200a

<=> (10b+1).10b=200a <=> b(10b+1)=20a. Không có giá trị của b thỏa mãn để: b(10b+1)⋮10 => Loại

+/ Trường hợp 3: Với c=5 => b5(b5-1)=200a <=> b4.b5=200a

Nhận thấy: b4 và b5 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.

Ta chọn được duy nhất b=2 (Do 24.25=600) => 24.25=200a => a=3 (nhận)

+/ Trường hợp4: Với c=6 => b6.b5=200a

Nhận thấy: b5 và b6 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.

Ta chọn được duy nhất b=7 (Do 75.76=5700) <=> 75.76=200a => a=28,5 (Loại)

Vậy cặp số duy nhất thỏa mãn là: a=3, b=2, c=5 Vậy \(\overline{abc}\) = 325.

28 tháng 3 2021

TTTTTTTTTTTTTTHHHHHHHHHHHHHAAAAAAAAAAAAAANNNNNNNNKKKKKKKKKKKKKKSSSSSSSSSSSSSSS HỒ ĐỨC VIỆT