K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d: tan B=AC/AB

sin B=AC/BC

AB<BC(ΔABC vuôngtại A)

=>AC/AB>AC/BC

=>tanB>sin B

b: Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*20=12*16

=>AH=9,6cm

Xét ΔABC vuông tại A có sin B=AC/BC=16/20=4/5

nên góc B=53 độ

=>góc C=37 độ

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có sin B=AC/BC=4/5

nên góc B=53 độ

=>góc C=37 độ

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>AH*20=12*16=192

=>AH=9,6cm

c: 

HB=AB^2/BC=12^2/20=7,2cm

HC=16^2/20=12,8cm

ΔAHB vuông tại H có HE là đường cao

nên HE*AB=AH*HB

=>HE*12=7,2*4,8

=>HE=2,88(cm)

ΔAHC vuông tại H có FH là đường cao

nên HF*AC=HA*HC

=>HF*16=4,8*12,8

=>HF=12,8*0,3=3,84(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)

\(\Leftrightarrow\widehat{C}\simeq37^0\)

\(\Leftrightarrow\widehat{B}=53^0\)

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

b: Xét ΔACB vuông tại A có AH là đường cao

nên AH^2=HB*HC

c:Bạn xem lại đề đi bạn. FA=FB và F,A,B thẳng hàng thì F là trung điểm của AB rồi bạn chứ ko nằm trên tia đối của tia BA

26 tháng 4 2016

a) BD; CE là đường cao => tam giác ABD và tam giác ACE vuông : có: AB = AC (do tam giác ABC cân tại A ); góc A chung

=> tam giác ABD = ACE (cạnh huyền - góc nhọn )

b) Tam giác BDC vuông tại D có trung tuyến DH ứng với cạnh huyền BC => DH = HC = BC/ 2

=> tam giác HDC cân tại H

c) sửa đề: chứng minh: DM = MC

Tam giác DHC cân tại H có HM là đuơng  cao nên đông thời là đường trung tuyến => M là TĐ của DC=> DM = MC

d)  Tam giác HND vuông tại M có: MI là trung tuyến => MI = HI = HD/2

=> tam giác IHM cân tại I => góc IHM = IMH 

lại có HM là p/g của góc DHC => góc IHM = MHC 

=> góc IMH = MHC mà 2 góc này ở vị trí SLT => MI // HC mà HC vuông góc với AH 

=> MI vuông góc với AH

28 tháng 4 2016

bạn Nobita Kun giải bài không theo điểm như đề bài cho, ý c đề bài đúng rồi ạ. ý d thì bạn hiểu nhầm đề rồi, bạn xem lại điểm I nhé

25 tháng 3 2022

cho tam giác abc vuông tại a biết ab=6cm,ac=8cm, a tính bc , b trên tia đối tia ac lấy điểm d sao cho ac=ad chứng minh tam giác bcd cân , c từ a vẽ ah vuông góc với bd tại h ak vuông góc bc tại k chứng minh tam giác bah= tam giác bka ,chứng minh tam giacs bhk cân từu đso chứng minh hk//cd , d qua điểm d kẻ đường thẳng a vuông góc vưới bd tại d qua điểm c kẻ đường thẳng b vuông góc với bc tại điểm c hai đường thẳng a và b cắt tại o chứng minh o,a,b thẳng hàng giúp mình với

 

NV
22 tháng 7 2021

a.

Trong tam giác vuông ABH ta có:

\(cotB=\dfrac{BH}{AH}\Rightarrow BH=AH.cotB\)

Trong tam giác vuông ACH ta có:

\(cotC=\dfrac{CH}{AH}\Rightarrow CH=AH.cotC\)

\(\Rightarrow BH+CH=AH.cotB+AH.cotC\)

\(\Leftrightarrow BC=AH\left(cotB+cotC\right)\)

\(\Leftrightarrow AH=\dfrac{BC}{cotB+cotC}\) (đpcm)

b. Áp dụng công thức câu a:

\(AH=\dfrac{4}{cot45^0+cot30^0}=-2+2\sqrt{3}\) (cm)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\left(-2+2\sqrt{3}\right).4=-4+4\sqrt{3}\approx2,93\left(cm^2\right)\)

NV
22 tháng 7 2021

undefined

6 tháng 11 2015

tick cho mình đi rồi mình gửi bài cho còn không tick thì mình không bày đâu nhé

25 tháng 10 2021

5 năm rồi anh ấy vẫn chưa có câu trả lời