3(x-2)² = x²-4 Giúp mình câu này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{x-3}{97}+\frac{x-27}{73}+\frac{x-67}{33}+\frac{x-73}{27}=4\)
\(\Leftrightarrow\left(\frac{x-3}{97}-1\right)+\left(\frac{x-27}{73}-1\right)+\left(\frac{x-67}{33}-1\right)+\left(\frac{x-73}{27}-1\right)=0\)
\(\Leftrightarrow\frac{x-100}{97}+\frac{x-100}{73}+\frac{x-100}{33}+\frac{x-100}{27}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\right)=0\)
Vì \(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}>0\) Nên \(x-100=0\)
\(\Leftrightarrow x=100\)
Vậy \(x=100\)
\(\Leftrightarrow\frac{x-3}{87}+\frac{x-27}{79}+\frac{x-67}{33}+\frac{x-73}{27}-4=0\)
\(\Leftrightarrow\left(\frac{x-3}{97}-1\right)+\left(\frac{x-27}{73}-1\right)+\left(\frac{x-67}{33}-1\right)+\left(\frac{x-73}{27}-1\right)=0\)
\(\Leftrightarrow\left(\frac{x-3-97}{97}\right)+\left(\frac{x-27-73}{73}\right)+\left(\frac{x-67-33}{33}\right)+\left(\frac{x-73-27}{27}\right)=0\)
\(\Leftrightarrow\frac{x-100}{97}+\frac{x-100}{73}+\frac{x-100}{33}+\frac{x-100}{27}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\right)=0\)
Vì \(\frac{1}{97}+\frac{1}{73}+\frac{1}{33}+\frac{1}{27}\ne0\)
\(\Rightarrow x-100=0\Leftrightarrow x=100\)
ĐKXĐ: \(-2\le x\le3\)
\(\dfrac{\sqrt{-x^2+x+6}}{2x+5}-\dfrac{\sqrt{-x^2+x+6}}{x-4}\ge0\)
\(\Leftrightarrow\sqrt{-x^2+x+6}\left(\dfrac{1}{2x+5}-\dfrac{1}{x-4}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(-x-9\right)\sqrt{x^2+x+6}}{\left(2x+5\right)\left(x-4\right)}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+x+6=0\\\dfrac{-x-9}{\left(2x+5\right)\left(x-4\right)}\ge0\end{matrix}\right.\) \(\Leftrightarrow-2\le x\le3\)
Hoặc có thể biện luận như sau:
Ta có: \(\left\{{}\begin{matrix}2x+5>0;\forall x\in\left[-2;3\right]\\x-4< 0;\forall x\in\left[-2;3\right]\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{-x^2+x+6}}{2x+5}\ge0\\\dfrac{\sqrt{-x^2+x+6}}{x-4}\le0\end{matrix}\right.\) ; \(\forall x\in\left[-2;3\right]\)
Do đó nghiệm của BPT là \(-2\le x\le3\)
\(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-2=0\)
\(\Rightarrow x^3+3x^2+3x+1-x^3+1-2=0\)
\(\Rightarrow3x^2+3x=0\Rightarrow3x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Đề trước đó:
(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x
<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x
<=>x^2-11x-6=0
<=>x^2-2x. 11/2 + 121/4-145/4=0
<=>(x-11/2)^2=145/4
<=>|x-11/2|=căn(145)/2
<=>x=[11+-căn(145)]/2
3/25 x ( 15/7 - 2/7 ) + 3/7 x 1/25
= 3/25 x 13/7 + 3/7 x 1/25
= (3 x 13/7 + 3/7 ) x 1/25
= 42/7 x 1/25
= 6 x 1/25
= 6/25
\(\dfrac{3}{25}\times\dfrac{15}{7}+\dfrac{3}{7}\times\dfrac{1}{25}-\dfrac{2}{7}\times\dfrac{3}{25}\)
\(=\dfrac{3}{25}\times\left(\dfrac{15}{7}-\dfrac{2}{7}\right)+\dfrac{3}{7}\times\dfrac{1}{25}\)
\(=\dfrac{3}{25}\times\dfrac{13}{7}+\dfrac{3}{7}\times\dfrac{1}{25}\)
\(=\dfrac{3\times13}{25\times7}+\dfrac{3\times1}{7\times25}\)
\(=\dfrac{39}{175}+\dfrac{3}{175}\)
\(=\dfrac{39+3}{175}\)
\(=\dfrac{42}{175}\)
\(=\dfrac{6}{25}\)
\(\dfrac{1+x}{1-x}+3=\dfrac{x-3}{x-1}\)
\(ĐK:x\ne1\)
\(\Leftrightarrow\dfrac{1+x}{1-x}+3=\dfrac{3-x}{1-x}\)
\(\Leftrightarrow\dfrac{\left(1+x\right)+3\left(1-x\right)}{1-x}=\dfrac{3-x}{1-x}\)
\(\Leftrightarrow\left(1+x\right)+3\left(1-x\right)=3-x\)
\(\Leftrightarrow1+x+3-3x=3-x\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\left(ktm\right)\)
Vậy pt vô nghiệm
\(\dfrac{1+x}{1-x}+3=\dfrac{x-3}{x-1}\) đề như thế này phải ko?
\(-\dfrac{4}{3}\cdot x=\dfrac{2}{3}:\dfrac{7}{12}:\dfrac{4}{18}\)
\(\Rightarrow-\dfrac{4}{3}\cdot x=\dfrac{36}{7}\)
\(\Rightarrow x=\dfrac{\dfrac{36}{7}}{-\dfrac{4}{3}}=-\dfrac{27}{7}\)
-\(\dfrac{4}{3}\).\(x\) = \(\dfrac{2}{3}\): \(\dfrac{7}{12}\):\(\dfrac{4}{18}\)
-\(\dfrac{4}{3}.x\) = \(\dfrac{2}{3}\times\)\(\dfrac{12}{7}\)\(\times\)\(\dfrac{18}{4}\)
-\(\dfrac{4}{3}.\)\(x\)= \(\dfrac{36}{7}\)
\(x\) = \(\dfrac{36}{7}\):(-\(\dfrac{4}{3}\))
\(x\) = - \(\dfrac{27}{7}\)
MÌNH CẦN GẤP LẮMMMM ĐÓOOOO
MỌI NGƯỜI GIẢI CHI TIẾT ĐỪNG BỎ BƯỚC NÀO NHAAAAA, MÌNH CẦN GẤP THIỆT ÁAAAA
\(3\left(x-2\right)^2=x^2-4\)
\(\Leftrightarrow3\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-6-x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow x-2=0\) hay \(x-4=0\)
\(\Leftrightarrow x=2\) hay \(x=4\)
-Vậy \(S=\left\{2;4\right\}\)