Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-2=0\)
\(\Rightarrow x^3+3x^2+3x+1-x^3+1-2=0\)
\(\Rightarrow3x^2+3x=0\Rightarrow3x\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
- Bài này phải có điều kiện \(x>0\) thì mới làm được nhé bạn.
À mình cảm ơn bạn nhá mình cũng vừa mới xem lại đề cô gửi thì mình thấy có điều kiện x>0 thật mình cảm ơn bạn nhiều nhá
\(\dfrac{1+x}{1-x}+3=\dfrac{x-3}{x-1}\)
\(ĐK:x\ne1\)
\(\Leftrightarrow\dfrac{1+x}{1-x}+3=\dfrac{3-x}{1-x}\)
\(\Leftrightarrow\dfrac{\left(1+x\right)+3\left(1-x\right)}{1-x}=\dfrac{3-x}{1-x}\)
\(\Leftrightarrow\left(1+x\right)+3\left(1-x\right)=3-x\)
\(\Leftrightarrow1+x+3-3x=3-x\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\left(ktm\right)\)
Vậy pt vô nghiệm
\(\dfrac{1+x}{1-x}+3=\dfrac{x-3}{x-1}\) đề như thế này phải ko?
\(A=3\left(x-3\right)\left(x+7\right)+\left(x+4\right)^2+48\)
\(A=3\left(x^2-4x-21\right)+\left(x^2+8x+16\right)+48\)
\(A=\left(3x^2+x^2\right)-\left(12x-8x\right)-\left(21-16-48\right)\)
\(A=4x^2-4x+43\)
\(A=\left(4x^2-4x+1\right)+42\)
\(A=\left(2x+1\right)^2+42\)
Thay \(x=\frac{1}{2}\) vao A ta duoc:
\(A=\left(2\cdot\frac{1}{2}+1\right)^2+42=46\)
\(A=3\left(x-3\right)\left(x-7\right)+\left(x+4\right)^2+48\)
\(=3x^2-13x+63+x^2+8x+16+48\)
\(=4x^2-5x+127\)
\(4\cdot0,25-5\cdot0,5+127=1-1+127=127\)
x3 _ x2 _ 4x - 4 = 0
x mũ 2(x+1)- 4(x+1)=0
(x mũ 2 - 4) (x+1)=0
(x+2) (x-2) (x+1) =0
suy ra (x+2)=0
(x-2)=0
(x+1)=0
vậy x=-2
x=2
x= -1
good luck!
Sửa đề : \(x^3-x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)
Bài 1:
a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)
b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)
c: Đề thiếu rồi bạn
a) \(\frac{x-1}{x+1}-\frac{x+1}{x-1}+\frac{4}{x^2-1}\left(ĐK:x\ne\pm1\right)\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2+4}{\left(x-1\right)\left(x+1\right)}\)
\(\frac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\frac{-4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=-\frac{4}{x+1}\)
b) \(\frac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\left(ĐK:x,y\ne0\right)\)
\(=\frac{xy\left(x^2+y^2\right)}{x^4y}\cdot\frac{1}{x^2+y^2}\)
\(=\frac{1}{x^3}\)
1
(x2-8)2+36
=x4-16x2+64+36
=x4+20x2+100-36x2
=(x2+10)2-(6x)2
HĐT số 3
Đề như này đúng chưa ạ?: (x-2)(x2 + 2x+4) - 128 + x3
=x3 - 23 - 128 + x3
= 2x3 -136
MÌNH CẦN GẤP LẮMMMM ĐÓOOOO
MỌI NGƯỜI GIẢI CHI TIẾT ĐỪNG BỎ BƯỚC NÀO NHAAAAA, MÌNH CẦN GẤP THIỆT ÁAAAA
\(3\left(x-2\right)^2=x^2-4\)
\(\Leftrightarrow3\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-6-x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow x-2=0\) hay \(x-4=0\)
\(\Leftrightarrow x=2\) hay \(x=4\)
-Vậy \(S=\left\{2;4\right\}\)