K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(C=\dfrac{5-x^2}{x^2+3}=\dfrac{-x^2-3+8}{x^2+3}=-1+\dfrac{8}{x^2+3}\)

Ta có: \(x^2>=0\forall x\)

=>\(x^2+3>=3\forall x\)

=>\(\dfrac{8}{x^2+3}< =\dfrac{8}{3}\forall x\)

=>\(\dfrac{8}{x^2+3}-1< =\dfrac{8}{3}-1=\dfrac{5}{3}\forall x\)

=>\(C< =\dfrac{5}{3}\forall x\)

Dấu '=' xảy ra khi x2=0

=>x=0

Vậy: \(C_{Max}=\dfrac{5}{3}\) khi x=0

24 tháng 9 2023

a, Vì \(\left(x-2\right)^2\ge0\) nên \(A=\left(x-2\right)^2+24\ge24\)

Dấu '=' xảy ra khi và chỉ khi: \(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là 24 khi x=2.

b,Vì \(-x^2\le0\) nên \(B=-x^2+\dfrac{13}{5}\le\dfrac{13}{5}\)

Dấu '=' xảy ra khi và chỉ khi: \(-x^2=0\Leftrightarrow x=0\)

Vậy GTLN của B là \(\dfrac{13}{5}\) khi x=0

23 tháng 9 2023

Ai trả lời nhanh và đúng mik give tick xanh nhé.

 

13 tháng 7 2021

mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii

27 tháng 7 2021

1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTNN biểu thức trên là 2 khi x = 1/2 

2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)

Dấu ''='' xảy ra khi x = 5 

Vậy GTLN biểu thức trên là -5 khi x = 5

3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xayr ra khi x = 1/2 

Vậy GTNN biểu thức là 3/4 khi x = 1/2 

4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)

Dấu ''='' xảy ra khi x = -1/5

Vậy GTNN biểu thức trên là -1 khi x = -1/5

6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)

\(=-\left(x-4\right)^2+21\le21\)

Dấu ''='' xảy ra khi x = 4

Vậy GTLN biểu thức trên là 21 khi x = 4

27 tháng 7 2021

Trả lời:

1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2

Vậy GTNN của bt = 2 khi x = 1/2

2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)

\(=-\left(x-5\right)^2-5\le-5\forall x\)

Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5

Vậy GTLN của bt = - 5 khi x = 5

3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)

Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5 

Vậy GTNN của bt = - 1 khi x = - 1/5

4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2

Vậy GTNN của bt = 3/4 khi x = 1/2

5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)

\(=-\left(x-4\right)^2+21\le21\forall x\)

Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4

Vậy GTLN của bt = 21 khi x = 4

13 tháng 7 2021

Ta có C = x2 - 4x + y2 - y + 5 

\(\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)

\(\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

=> Min C = 3/4

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Vậy Min C = 3/4 <=> x = 2 ; y = 1/2 

13 tháng 7 2021

C = ( x2 - 4x + 4 ) + ( y2 - y + 1/4 ) + 3/4

= ( x - 2 )2 + ( y - 1/2 )2 + 3/4 ≥ 3/4 ∀ x.y 

Dấu "=" xảy ra <=> x = 2 ; y = 1/2 . Vậy MinC = 3/4

4 tháng 2 2017

giá trị lớn nhất là 15 khi x=-3

4 tháng 2 2017

Giá trị lớn nhất của biểu thức B = 225