K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

a) \(a^2+b^2+2ab+2a+2b+1=\left(a^2+2ab+b^2\right)+\left(2a+2b\right)+1\)

\(=\left(a+b\right)^2+2\left(a+b\right)+1=\left[\left(a+b\right)+1\right]^2=\left(a+b+1\right)^2\)

b) K phân tích dc.

14 tháng 7 2016

giúp với ạ

3 tháng 8 2023

loading...  

HQ
Hà Quang Minh
Giáo viên
3 tháng 8 2023

\(2ax-bx+3cx-2a+b-3c\\ =x\left(2a-b+3c\right)-\left(2a-b+3c\right)\\ =\left(x-1\right)\left(2a-b+3c\right)\)

 

\(ax-bx-2cx-2a+2b+4c\\ =x\left(a-b-2c\right)-2\left(a-b-2c\right)\\ =\left(x-2\right)\left(a-b-2c\right)\)

 

\(3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\)

 

\(ax^2-bx^2-2ax+2bx-3a+3b\\ =x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a+b\right)\\ =\left(x^2-2x-3\right)\left(a+b\right)\\ =\left(x+1\right)\left(x-3\right)\left(a+b\right)\)

8 tháng 9 2020

A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )

= 4x( ac + bc + a + b )

= 4x[ c( a + b ) + ( a + b ) ]

= 4x( a + b )( c + 1 )

B = ax - bx + cx - 3a + 3b - 3c

= x( a - b + c ) - 3( a - b + c )

= ( a - b + c )( x - 3 )

C = 2ax - bx + 3cx - 2a + b - 3c

= x( 2a - b + 3c ) - ( 2a - b + 3c )

= ( 2a - b + 3c )( x - 1 )

D = ax - bx - 2cx - 2a + 2b + 4c

= x( a - b - 2c ) - 2( a - b - 2c )

= ( a - b - 2c )( x - 2 )

E = 3ax2 + 3bx2 + ax + bx + 5a + 5b

= 3x2( a + b ) + x( a + b ) + 5( a + b )

= ( a + b )( 3x2 + x + 5 )

F = ax2 - bx2 - 2ax + 2bx - 3a + 3b

= x2( a - b ) - 2x( a - b ) - 3( a - b )

= ( a - b )( x2 - 2x - 3 )

= ( a - b )( x2 + x - 3x - 3 )

= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]

= ( a - b )( x + 1 )( x - 3 )

31 tháng 7 2021

a) x4+2x2+1=(x2+1)2

b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)

c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)

d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)

31 tháng 7 2021

\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)

\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)

\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)

 

16 tháng 10 2019

a, x(a - b) + (a - b)

= (x + 1)(a - b)

b, x(a + b) - a - b

= x(a + b) - (a + b)

= (x - 1)(a + b)

c, 10ax - 5ay - 2x + y

=  5a(2x - y) - (2x - y)

= (5a - 1)(2x - y)

d, 2a^2x - 5by - 5a^2y + 2bx

= 2x(a^2 + b) - 5y(b + a^2)

= (2a - 5y)(a^2 + b)

làm tiếp:

2ax2 - bx2 - 2ax +bx +4a-2b

= x2(2a-b) - x(2a-b) +2(2a-b)

=(2a-b)(x2-x+2)

17 tháng 12 2021

bạn kiểm tra lại đề bài đi:v

17 tháng 12 2021

đề bình thường mà

 

15 tháng 7 2021

`a)x^4+2x^2y+y^2`

`=(x^2+y)^2`

`b)(2a+b)^2-(2b+a)^2`

`=(2a+b-2b-a)(2a+b+2b+a)`

`=(a-b)(3a+3b)`

`=3(a-b)(a+b)`

`c)8a^3-27b^3-2a(4a^2-9b^2)`

`=(2a-3b)(4a^2+6ab+9b^2)-2a(2a-3b)(2a+3b)`

`=(2a-3b)(4a^2+6ab+9b^2-3a^2-6ab)`

`=9b^2(2a-3b)`

a) Ta có: \(x^4+2x^2y+y^2\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\)

\(=\left(x^2+y\right)^2\)

b) Ta có: \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)

\(=\left(a-b\right)\left(3a+3b\right)\)

\(=3\left(a+b\right)\left(a-b\right)\)

19 tháng 2 2017

biết chết liền, đang định hỏi này

6 tháng 12 2021

\(a,=4x^3\left(x+1\right)-x\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\\ =x\left(2x-1\right)\left(2x+1\right)\left(x+1\right)\\ b,=\left(a-1\right)^2-\left(b-c\right)^2\\ =\left(a-1-b+c\right)\left(a-1+b-c\right)\\ c,=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\\ =\left(x^2-9x+17\right)^2-9-72\\ =\left(x^2-9x+17\right)^2-81=\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)