Cho tam giác ABC. Trong tam giác lấy một điểm M sao cho góc MAC= góc MBC. Kẻ ME, MF lần lượt vuông góc với BC, AC. Gọi D là trung điểm AB. Chứng minh rằng DE=DF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
Câu 1: Em tham khảo tại đây nhé.
Câu hỏi của trần thị minh hải - Toán lớp 7 - Học toán với OnlineMath
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
Do đó: AEDF là hình vuông
b: ΔDEB vuông tại E
mà EM là trung tuyến
nên EM=MD
=>góc EMD=2*góc ABC
a: Xet ΔMAC và ΔMEB co
MA=ME
góc AMC=góc EMB
MC=MB
=>ΔMAC=ΔMEB
b: ΔMAC=ΔMEB
=>góc MAC=góc MEB và AC=EB
=>AC//EB
c: Xét tứ giác ABEC có
AC//EB
AC=EB
=>ABEC là hình bình hành
mà AB=BE
nên ABEC là hình thoi
=>AM là phân giác của góc BAC
d: Xét ΔMNB vuông tại N và ΔMPC vuông tại P có
MB=MC
góc MBN=góc MCP
=>ΔMNB=ΔMPC
=>MN=MP và góc NMB=góc PMC
=>góc NMB+góc BMP=180 độ
=>N,M,P thẳng hàng
mà MN=MP
nên M là trung điểm của NP
Vẽ hình bài này trên Sketpad không được nên mình giải ra giấy nha!