Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$DE=DF$ nên tam giác $DEF$ cân tại $D$. Do đó đường trung tuyến $DM$ đồng thời là đường cao và đường phân giác, hay $DM\perp EF$ và $\widehat{EDM}=\widehat{MDF}$
Kẻ $DL\perp BF$.
Dễ thấy $DLMF$ nội tiếp do $\widehat{DLF}=\widehat{DMF}=90^0$
$\Rightarrow \widehat{MLF}=\widehat{MDF}=\widehat{EDM}=90^0-\widehat{DEM}=\widehat{MEC}(1)$
Cũng dễ thấy:
$BELD$ là tứ giác nội tiếp do $\widehat{BED}=\widehat{BLD}=90^0$
$\Rightarrow \widehat{BLE}=\widehat{BDE}=90^0-\widehat{B}=\widehat{BCA}$
$\Rightarrow CELF$ là tứ giác nội tiếp.
$\Rightarrow \widehat{CLF}=\widehat{MEC}(2)$
Từ $(1);(2)\Rightarrow \widehat{MLF}=\widehat{CLF}$ kéo theo $L,C,M$ thẳng hàng.
Do đó:
$\widehat{BCM}=\widehat{ECL}=\widehat{EFL}=\widehat{EFB}$ (đpcm)
1: Xét ΔCAB có
D,E lần lượt là trung điểm của BA,BC
=>DE là đường trung bình của ΔCAB
=>DE//AC
DE//AC
AB\(\perp\)AC
Do đó: DE\(\perp\)AB
AB=2AC
AB=2AD=2BD
Do đó: AD=BD=AC
Xét tứ giác ADFC có
\(\widehat{CFD}=\widehat{CAD}=\widehat{ADF}=90^0\)
=>ADFC là hình chữ nhật
Hình chữ nhật ADFC có AC=AD
nên ADFC là hình vuông
a: Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
AD là phân giác của góc FAE
Do đó: AEDF là hình vuông
b: ΔDEB vuông tại E
mà EM là trung tuyến
nên EM=MD
=>góc EMD=2*góc ABC
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Vẽ hình bài này trên Sketpad không được nên mình giải ra giấy nha!