1) tìm x thuộc n để:
a) 3x + 7x là số nguyên tố
b) 7x - 4x là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(n=0\Rightarrow A=10\) không phải SNT (ktm)
- Với \(n=1\Rightarrow A=3\) là SNT (thỏa mãn)
- Với \(n=2\Rightarrow A=0\) không phải SNT (ktm)
- Với \(n=3\Rightarrow A=7\) là SNT (thỏa mãn)
- Xét với \(n>3\Rightarrow n-2>1\) đồng thời \(n^2>9\)
Ta có: \(\left(n^2+n-5\right)-\left(n-2\right)=n^2-3>0\) (do \(n^2>9>3\))
\(\Rightarrow n^2+n-5>n-2>1\)
\(\Rightarrow A\) có ít nhất 2 ước phân biệt đều lớn hơn 1 nên A không thể là SNT
Vậy \(n=1\) hoặc \(n=3\) thì A là SNT
Nếu x=1 thì 5x=5; 7x=7
=>Nhận
Nếu x<>1 thì 5x chia hết cho 5 và 7x chia hết cho 7 thì loại
Theo đề ra, ta có: \(p,q\ge2\) và \(7q+p;pq+11\ge2\)
Xét trường hợp 1: \(7p+q\) hoặc \(pq+11\) là chẵn
=> \(7p+q=2\) hoặc \(pq+11=2\)
=> \(7p=2-q< 2\)(mà \(p\ge2\) => loại) hoặc \(pq=2-11=-9< 0\)(loại)
Xét trường hợp 2: \(7p+q;pq+11\) đều là lẻ.
=> \(pq\) là chẵn => \(p\) hoặc \(q\) chẵn
*) Với \(p\) chẵn =>\(p=2\) => 2 số nguyên tố sẽ là: \(14+q\) và \(2q+11\)
+) Xét \(q=3k\Rightarrow k=1\)(do q là số nguyên tố) . Thỏa mãn đề bài => q=3
+) Xét \(q=3k+1\Rightarrow14+q=15+3q⋮3\) mà 14+q>3 => Loại
+) Xét \(q=3k+2\Rightarrow2q+11=6k+15⋮3\) mà 6k+15 >3=> Loại
*) Với \(q\) chẵn => \(q=2\) => 2 số nguyên tố sẽ là: \(7q+2;2p+11\)
+) Xét \(p=3k\Rightarrow k=1\)(Do p là số nguyên tố) => \(p=3\) và nó thỏa mãn đề bài.
+) Xét \(p=3k+1\Rightarrow7p+2=21k+9⋮3\) mà 21k+9>3=> Loại.
+) Xét \(p=3k+2\Rightarrow2p+11=6k+15⋮3\) mà 6k+15> 3 => Loại.
Vậy các cặp số thỏa mãn là \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\)
a) 3x + 7x = x .(3 + 7) = x . 10
Với x thuộc N thì 3x + 7x luôn có ước là 10 => 3x + 7x chia hết cho 10 => 3x + 7x chia hết cho 2 và 5 => 3x + 7x có ít nhất 3 ước là 1; 2; 5, không là số nguyên tố
Vậy không tìm được giá trị x thỏa mãn
b) 7x - 4x = 3x
+ Với x = 0 => 7x - 3x = 0 - 0 = 0, không là số nguyên tố, loại
+ Với x = 1 => 7x - 4x = 7 - 4 = 3, là số nguyên tố, chọn
+ Với x > 1 thì 7x - 4x sẽ có ít nhất 3 ước là 1 ; x; 3, không là số nguyên tố, loại
Vậy x = 1
Ủng hộ mk nha ^_-