Viết chương trình con:
a) Tính chu vi và diện tích hình tròn theo bán kính.
b) Tính diện tích tam giác, bán kính đường tròn nội và ngoại tiếp tam giác theo 3 cạnh.
c) Tính thể tích và đường chéo hình hộp chữ nhật theo 3 kích thước.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔMAO vuông tại M có \(sinMAO=\dfrac{OM}{OA}=\dfrac{1}{2}\)
nên \(\widehat{MAO}=30^0\)
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AO là phân giác của góc MAN
=>\(\widehat{MAN}=2\cdot\widehat{MAO}=2\cdot30^0=60^0\)
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
Xét ΔAMN có AM=AN và \(\widehat{MAN}=60^0\)
nên ΔAMN đều
ΔOMA vuông tại M
=>\(OM^2+MA^2=OA^2\)
=>\(MA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(MA=R\sqrt{3}\)
Chu vi tam giác AMN là:
\(AM+MN+AN=R\sqrt{3}+R\sqrt{3}+R\sqrt{3}=3R\sqrt{3}\)
ΔMAN đều
=>\(S_{AMN}=AM^2\cdot\dfrac{\sqrt{3}}{4}=\left(R\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{3\sqrt{3}\cdot R^2}{4}\)
Gọi D, E, F lần lượt là tiếp điểm của (O) với BC, AC, AB
\(\Rightarrow OD\perp BC\) ; \(OE\perp AC\) ; \(OF\perp AB\)
Và \(OD=OE=OF=R\)
Ta có:
\(S_{ABC}=S_{OAB}+S_{OAC}+S_{OBC}\)
\(=\dfrac{1}{2}OF.AB+\dfrac{1}{2}OE.AC+\dfrac{1}{2}OD.BC\)
\(=\dfrac{1}{2}R.AB+\dfrac{1}{2}R.AC+\dfrac{1}{2}R.BC\)
\(=\dfrac{1}{2}R.\left(AB+AC+BC\right)\)
\(\Rightarrow45=\dfrac{1}{2}R.30\)
\(\Rightarrow R=3\left(cm\right)\)
2: ΔABC vuông tại A nội tiếp (O)
=>O là trung điểm của BC
BC=căn 6^2+8^2=10cm
=>OB=OC=10/2=5cm
S=5^2*3,14=78,5cm2
a) Áp dụng công thức: \(S = \frac{1}{2}bc\sin A\), ta có:
\(S = \frac{1}{2}.14.35.\sin {60^o} = \frac{1}{2}.14.35.\frac{{\sqrt 3 }}{2} \approx 212,2\)
Áp dụng đl cosin, ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)
\(\begin{array}{l}
\Rightarrow {a^2} = {14^2} + {35^2} - 2.14.35.\cos {60^o} = 931\\
\Rightarrow a \approx 30,5
\end{array}\)
\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{30,5}}{{2\sin {{60}^o}}} \approx 17,6\)
b) Ta có: \(p = \frac{1}{2}.(4 + 5 + 3) = 6\)
Áp dụng công thức Heron, ta có:
\(S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {6(6 - 4)(6 - 5)(6 - 3)} = 6.\)
Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{4.5.3}}{{4.6}} = 2,5.\)