K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 9 2021
b: Gọi giao điểm của OM và AB là H
Suy ra: H là trung điểm của AB
Xét ΔOAM vuông tại A có
\(OM^2=OA^2+AM^2\)
\(\Leftrightarrow AM=\dfrac{R\sqrt{3}}{2}\left(cm\right)\)
Xét ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM
nên \(AH\cdot OM=OA\cdot AM\)
\(\Leftrightarrow AH\cdot2\cdot R=\dfrac{R^2\sqrt{3}}{2}\)
\(\Leftrightarrow AH=\dfrac{R^2\sqrt{3}}{2}\cdot\dfrac{1}{2R}=\dfrac{R\sqrt{3}}{4}\)
\(\Leftrightarrow AB=\dfrac{R\sqrt{3}}{2}\)
c: Xét ΔMAB có MA=MB
nên ΔMAB cân tại M
Xét ΔMAO vuông tại M có \(sinMAO=\dfrac{OM}{OA}=\dfrac{1}{2}\)
nên \(\widehat{MAO}=30^0\)
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AO là phân giác của góc MAN
=>\(\widehat{MAN}=2\cdot\widehat{MAO}=2\cdot30^0=60^0\)
Xét (O) có
AM,AN là các tiếp tuyến
Do đó: AM=AN
Xét ΔAMN có AM=AN và \(\widehat{MAN}=60^0\)
nên ΔAMN đều
ΔOMA vuông tại M
=>\(OM^2+MA^2=OA^2\)
=>\(MA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(MA=R\sqrt{3}\)
Chu vi tam giác AMN là:
\(AM+MN+AN=R\sqrt{3}+R\sqrt{3}+R\sqrt{3}=3R\sqrt{3}\)
ΔMAN đều
=>\(S_{AMN}=AM^2\cdot\dfrac{\sqrt{3}}{4}=\left(R\sqrt{3}\right)^2\cdot\dfrac{\sqrt{3}}{4}=\dfrac{3\sqrt{3}\cdot R^2}{4}\)