cho \(\frac{a}{b}=\frac{c}{d},\)(b+d khác 0), CMR\(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Ngọc Thảo Linh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)(1)
Áp dụng tính chất của dãy tỉ số bằng nhau cho ( 1 ) ta có :
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)
=> Điều phải chứng minh
ta có: .\(\frac{a.c}{b.d}\)= \(\frac{^{a^2}}{b^2}\); \(\frac{a.c}{b.d}\)=\(\frac{c^2}{d^2}\)vậy \(\frac{a.c.b^2}{b.d}\)= a2 (1) và \(\frac{a.c.d^2}{b.d}\)= c2 (2)
(1)+(2) suy ra \(\frac{a.c}{b.d}\)= \(\frac{a^2+c^2}{b^2+d^2}\)
Cho a,b,c,d khác 0 và
b2=a.c;c2=b.d
b3+c3+d3khác 0
CMR:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Ta có: b2=a.c => \(\frac{a}{b}=\frac{b}{c}\)(1)
c2=b.d =>\(\frac{b}{c}=\frac{c}{d}\)(2)
Từ (1), (2) => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( tính chất dãy tỉ số bằng nhau)
\(b^2=ac;c^2=bd\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đến đây có 2 cách:
Cách 1:Đặt k.Dài,tự làm
Cách 2:
Áp dụng DTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)
ta có \(b^2=ac=\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd=\frac{b}{c}=\frac{c}{d}\left(2\right)\)
từ (1) and (2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(3\right)\)
ta lại có \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)
từ (3) and (4) =>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(dpcm\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
=>\(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)
=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}.\frac{c}{d}\)
=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\) ( theo t/c dãy tỉ số bằng nhau)
=>\(\frac{ab}{bc}=\frac{a^2+c^2}{b^2+d^2}\) (đpcm)
Hình như (a2)/(b2) và (c2)/(d2) không bằng (a/b).(c/d) thì phải.
+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
câu cuối lm tương tự
Ta có: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3+2ab+2ac+2bc}{b^3+c^3+d^3+2bc+2bd+2cd}\)
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\),đặt \(\frac{a}{c}=\frac{b}{d}=k=>a=ck;b=dk\)
Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(1\right)\)
\(\frac{a.c}{b.d}=\frac{ck.c}{dk.d}=\frac{c^2k}{d^2k}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\)
\(=>\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)
\(=\frac{a.c}{b.d}\)