K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\),đặt \(\frac{a}{c}=\frac{b}{d}=k=>a=ck;b=dk\)

Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(1\right)\)

\(\frac{a.c}{b.d}=\frac{ck.c}{dk.d}=\frac{c^2k}{d^2k}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\left(đpcm\right)\)
 

\(\frac{a}{b}=\frac{c}{d}\)

\(=>\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)

\(=\frac{a.c}{b.d}\)

2 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)(1)

Áp dụng tính chất của dãy tỉ số bằng nhau cho ( 1 ) ta có :

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)

=> Điều phải chứng minh

7 tháng 9 2019

Câu hỏi của Nguyễn Ngọc Thảo Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé! 

9 tháng 9 2017

ta có: .\(\frac{a.c}{b.d}\)\(\frac{^{a^2}}{b^2}\)\(\frac{a.c}{b.d}\)=\(\frac{c^2}{d^2}\)vậy \(\frac{a.c.b^2}{b.d}\)=  a2    (1)  và  \(\frac{a.c.d^2}{b.d}\)=   c2  (2)

(1)+(2) suy ra \(\frac{a.c}{b.d}\)=   \(\frac{a^2+c^2}{b^2+d^2}\)

29 tháng 11 2015

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

=>\(\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)

=>\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}.\frac{c}{d}\)

=>\(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)             ( theo t/c dãy tỉ số bằng nhau)

=>\(\frac{ab}{bc}=\frac{a^2+c^2}{b^2+d^2}\)                          (đpcm)

29 tháng 11 2015

Hình như (a2)/(b2) và (c2)/(d2) không bằng (a/b).(c/d) thì phải.

Y
23 tháng 5 2019

+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)

câu cuối lm tương tự

21 tháng 7 2016

Ta có: b2=a.c => \(\frac{a}{b}=\frac{b}{c}\)(1)

          c2=b.d =>\(\frac{b}{c}=\frac{c}{d}\)(2)

Từ (1), (2) => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

               =>\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)

               => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)( tính chất dãy tỉ số bằng nhau)

21 tháng 2 2020

\(b^2=ac;c^2=bd\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c};\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đến đây có 2 cách:

Cách 1:Đặt k.Dài,tự làm

Cách 2:

Áp dụng DTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

21 tháng 2 2020

ta có \(b^2=ac=\frac{a}{b}=\frac{b}{c}\) (1)

\(c^2=bd=\frac{b}{c}=\frac{c}{d}\left(2\right)\)
từ (1) and (2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(3\right)\)

ta lại có \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(4\right)\)

từ (3) and (4) =>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(dpcm\right)\)

19 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a.c}{b.d}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)