- 4x10-9x8=0
Tìm x, Khó quá giúp minh tí nhé mình tic cho giải kĩ mà dễ hiểu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Học Toán trước hết học Văn hóa đã bạn nhé! Lớp 7 rồi mà viết "... PHẢI trình bày lời giải", nghe không hợp tai.
Dãy số A = { a1 ; a2 ; ... a3 }có tích 3 số bất kỳ là dương.
Nếu có aj = 0 thì tích aj * a1 * a2 = 0 trái đề bài, loại => Không số nào trong A = 0 (1)
Giả sử có 1 số ai <0 thì:
Tích của ai * ax * ay > 0 => ax * ay < 0 => ax và ay trái dấu => có hoặc ax hoặc ay <0 - Giả sử ax < 0
Tích của ai * am * an > 0 => am * an < 0 am và an trái dấu => có hoặc am hoặc an <0 - Giả sử am < 0
Như vậy tích ai * ax * am < 0 - trái với giả thiết đề bài.
Như vậy điều giả sử là sai.
Trái với điều giả sử là: Không có số nào trong A < 0 (2)
Từ (1) và (2) => Tất cả số trong A đều > 0 - đpcm.
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(x^2-x+1=\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2-x+1\ne0\)
Vậy đa thức trên vô nghiệm
x2 - x + 1 = (x - 1).x + 1
Vì (x - 1) ; x là 2 số liên tiếp
=> x.(x - 1) \(\ge0\)
mặt khác , lại cộng 1 vào
=> x.(x - 1) + 1\(\ge1\)
=> Biểu thức đó không có nghiệm
Vì biểu thức có nghiệm là biểu thức phải có kết quả bằng 0 đề xác định được nghiệm , nhưng trong trường hợp này , kết quả của biểu thức lớn hơn hoặc bằng 1
Sao mà dài dữ vậy, à mà mình lớp 7 rùi nên mình không còn giữ sách lớp 6 mình không giúp bạn được
Xin lỗi bạn nhé!!!!!!!!!!!! Tha lỗi cho mình nhé.
Xin lỗi bn ! Mk mới lớp 5 nên ko giải được cho bn . Sorry bn nhiều .
11c.
Từ đề bài ta có:
\(\left\{{}\begin{matrix}\dfrac{16a-b^2}{4a}=\dfrac{9}{2}\\16a+4b+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2b^2=-4a\\b=-4a-1\end{matrix}\right.\)
\(\Rightarrow2b^2-b=1\Leftrightarrow2b^2-b-1=0\Rightarrow\left[{}\begin{matrix}b=1\Rightarrow a=-\dfrac{1}{2}\\b=-\dfrac{1}{2}\Rightarrow a=-\dfrac{1}{8}\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=-\dfrac{1}{2}x^2+x+4\\y=-\dfrac{1}{8}x^2-\dfrac{1}{2}x+4\end{matrix}\right.\)
4f.
Từ đề bài ta có:
\(\left\{{}\begin{matrix}1+b+c=0\\\dfrac{4c-b^2}{4}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=-b-1\\c=\dfrac{b^2}{4}-1\end{matrix}\right.\)
\(\Rightarrow\dfrac{b^2}{4}+b=0\)
\(\Rightarrow\left[{}\begin{matrix}b=0\Rightarrow c=-1\\b=-4\Rightarrow c=3\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=x^2-1\\y=x^2-4x+3\end{matrix}\right.\)
Theo đề bài ta có:\(4x^{10}-9x^8=0\)
\(\Rightarrow4x^{10}=9x^8\)
\(\Rightarrow\frac{x^{10}}{x^8}=\frac{9}{4}\)
\(\Rightarrow x^2=\left(\frac{3}{2}\right)^2\)
\(\Rightarrow x=\frac{3}{2}\)
Kết quả này minh thử lại k đúng