Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì \(2x^4+3x^2>=0\)
nên \(2x^4+3x^2+4\ge4>0\)
=>P(x) không có nghiệm
Học Toán trước hết học Văn hóa đã bạn nhé! Lớp 7 rồi mà viết "... PHẢI trình bày lời giải", nghe không hợp tai.
Dãy số A = { a1 ; a2 ; ... a3 }có tích 3 số bất kỳ là dương.
Nếu có aj = 0 thì tích aj * a1 * a2 = 0 trái đề bài, loại => Không số nào trong A = 0 (1)
Giả sử có 1 số ai <0 thì:
Tích của ai * ax * ay > 0 => ax * ay < 0 => ax và ay trái dấu => có hoặc ax hoặc ay <0 - Giả sử ax < 0
Tích của ai * am * an > 0 => am * an < 0 am và an trái dấu => có hoặc am hoặc an <0 - Giả sử am < 0
Như vậy tích ai * ax * am < 0 - trái với giả thiết đề bài.
Như vậy điều giả sử là sai.
Trái với điều giả sử là: Không có số nào trong A < 0 (2)
Từ (1) và (2) => Tất cả số trong A đều > 0 - đpcm.
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
Lời giải:
$M(x)=x^2-x+2023=(x^2-x+\frac{1}{4})+\frac{8091}{4}=(x-\frac{1}{2})^2+\frac{8091}{4}$
Vì $(x-\frac{1}{2})^2\geq 0$ với mọi $x$ nên $M(x)\geq \frac{8091}{4}>0$ với mọi $x$
$\RIghtarrow M(x)\neq 0$ với mọi $x$ nên $M(x)$ không có nghiệm.
a: Đặt f(x)=0
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
b: 2x^2+3x+1=0
=>2x^2+2x+x+1=0
=>(x+1)(2x+1)=0
=>x=-1/2 hoặc x=-1
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
Đặt Q(x) = 0
=> x2 + 5x - 3 = 0
=> x2 + 5x = 3
=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
\(x^2-x+1=\left(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2-x+1\ne0\)
Vậy đa thức trên vô nghiệm
x2 - x + 1 = (x - 1).x + 1
Vì (x - 1) ; x là 2 số liên tiếp
=> x.(x - 1) \(\ge0\)
mặt khác , lại cộng 1 vào
=> x.(x - 1) + 1\(\ge1\)
=> Biểu thức đó không có nghiệm
Vì biểu thức có nghiệm là biểu thức phải có kết quả bằng 0 đề xác định được nghiệm , nhưng trong trường hợp này , kết quả của biểu thức lớn hơn hoặc bằng 1