cho hình chữ nhật ABCD,biết AD=48cm,CD=36cm.tính độ dài cạnh AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py-ta-go trong ΔACD vuông tại D ta có:
AC2 = AD2 + CD2 = 482 + 362 = 2304 + 1296 = 3600
⇒ AC = 60(cm)
a) Hình chữ nhật \(ABCD\) có \(AB=CD=48 cm\), \(AD=BC=24 cm\).
\(M\) là trung điểm \(CD\) \(\Rightarrow CM=DM=\dfrac{CD}{2}=\dfrac{48}{2}=24\).
Kẻ \(MH\perp BF\Rightarrow MH=BC=24 cm\).
Ta có: \(S_{MBF}=\dfrac{1}{2}BF.MH\Rightarrow BF=\dfrac{2S_{MBF}}{MH}=\dfrac{2.468}{24}=39 (cm)\)
\(\Rightarrow AF=AB-BF=48-39=9 (cm)\).
b) Ta có:
\(S_{ADMF}=\dfrac{1}{2}(AF+DM).AD=\dfrac{1}{2}(9+24).24=396 (cm^2)\).
\(S_{BCMF}=\dfrac{1}{2}(BF+MC).BC=\dfrac{1}{2}(39+24).24=756 (cm^2)\).
ABCD là hcn = AB = CD = 48 cm; BC = AD = 24 cm.
M là trung điểm CD => MC = MD = 24 cm.
a) Ta thấy tam giác MBF có đường cao hạ từ M (gọi là MH) dài bằng đoạn DA = 24 cm (M thuộc CD, mà CD//AB, MH vuông góc với AB và DA cũng vuông góc với AB => MH = DA).
SMBF= MH.BF.1/2 = 468
24. BF. 1/2 = 468
BF = 40.5
AF = AB - BF = 7.5 (cm)
Vậy AF = 7.5 cm.
b) Hai tứ giác ADMF và BCMF là hai hình thang đó AF//DM và BF//CM.
SADMF= 1/2xADx(AF+DM)=1/2 x 24 x (7.5 + 24)
SBCMF= 1/2 x BC x (BF + CM) = 1/2 x 24 x (40.5 + 24)
\(S_{ABCD}=AB.BC\)
\(S_{BFEC}=\frac{\left(BF+EC\right).BC}{2}\)
Theo đề bài
\(\frac{S_{ABCD}}{3}=S_{BFEC}\Rightarrow\frac{AB.AC}{3}=\frac{\left(BF+EC\right)BC}{2}\Rightarrow\frac{AB}{3}=\frac{BF+EC}{2}=\frac{48}{3}=16\)
\(\Rightarrow BF=2.16-EC=32-EC\)
Mà \(EC=\frac{CD}{2}=\frac{AB}{2}=\frac{48}{2}=24\)
\(\Rightarrow BF=32-24=8\)
- S
BFEC=S1=\(\frac{1}{2}\)(FB+EC).BC - S
ABCD=S2= AB.BC - \(\frac{S1}{S2}\)=\(\frac{BF+EC}{2AB}\)=\(\frac{1}{3}\)\(\Rightarrow\)BF=\(\frac{2AB}{3}\)- EC= \(\frac{2.48}{3}\)-24=8
a) Diện tích hình chữ nhật ABCD là:
SABCD = 12.16= 192 ( cm2)
b) Áp dụng định lý Py-ta-go trong tam giác ADC vuông tại A :
AD2 + DC2 = AC2
122 + 162 = AC2
400 = AC2
=> AC = 20 (cm)
HCN ABCD có O là giao điểm hai đường chéo AC và BD nên O là trung điểm của AC và BD.
Xét tam giác ADC vuông tại D có O là trung điểm AC
=> DO = 1/2 AC = 1/2 . 20 = 10 ( cm )
Tam giác ADC vuông tại D có O là trung điểm AC
M là trung điểm AD
=> MO là đường trung bình của tam giác ADC
=> MO = 1/2 DC
=> MO = 1/2 . 16 = 8 ( cm)
Đọ dài cạnh AD là: 2 x 2 = 4 (cm)
Diện tích hình chữ nhật ABCD là: 4 × 2 = 8 ( c m 3 )
Vì ABCD là hcn => AB = CD = 36 cm
Theo định lí Pytago tam giác ADC vuông tại D
\(AC=\sqrt{AD^2+DC^2}=60cm\)