K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=10cm

b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có

BK chung

\(\widehat{ABK}=\widehat{HBK}\)

Do đó: ΔABK=ΔHBK

10 tháng 2 2022

a) Ta có:

\(BC^2=AB^2+AC^2\)

\(10^2=6^2+8^2=36+64=100\)

Áp dụng định lí Pytago đảo 

⇒ Tam giác ABC vuông tại A

b) 1/ Xét tam giác ABD và tam giác EBD có

^A=^E=90o(gt)

BD: cạnh chung

^B1=^B2(BD phân giác ^B)

⇒ Tam giác ABD= tam giác EBD

2/ Em xem lại đề ha

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó; ΔABD=ΔEBD

20 tháng 2 2022

minh dang can gap

Bài 1: 
AC=4cm

Xét ΔABC có AB<AC

nên \(\widehat{C}< \widehat{B}\)

Bài 2: 

BC=6cm

=>AB+AC=14cm

mà AB=AC

nên AB=AC=7cm

Xét ΔABC có AB=AC>BC

nên \(\widehat{B}=\widehat{C}>\widehat{A}\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm

 

28 tháng 3 2022

Xét ΔABC vuông ở A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Ta có : AD là phân giác \(\widehat{BAC}\)

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)

hay \(\dfrac{BD}{DC}=\dfrac{6}{8}\)

\(\Rightarrow\dfrac{BD}{6}=\dfrac{DC}{8}=\dfrac{BD+DC}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

\(\Rightarrow BD=\dfrac{5}{7}.6=\dfrac{30}{7}\left(cm\right)\)

\(\Rightarrow DC=\dfrac{5}{7}.8=\dfrac{40}{7}\left(cm\right)\)

28 tháng 3 2022

Hình bạn tự kẻ nhé!

Xét tam giác ABC vuông tại A có:

             AB2 + AC2 = BC2      ( định lý Pytago )

=>              62 + 8= BC2

<=>            36 + 64 = BC2

<=>                  100 = BC2

<=>                   BC = 10 (cm)       ( vì BC > 0 )

Xét tam giác ABC có: BD là đường pg của tam giác ABC

 =>              DA / DC = AB / BC

 => DA / ( DA + DC ) = AB/ ( BC + AB )

<=>              DA / AC = 3/8

<=>                AD / 8  = 3/8

 <=>                     AD = 3 (cm)

Vậy AD = 3 cm. 

14 tháng 5 2022

a) Xét △ABC vuông tại A có:

BC² = AC² + AB² (ĐL Pytago)

BC² = 8² + 6²

BC² = 100

BC = 10 cm

Vậy BC = 10 cm

b) Xét △ABD và △EBD có:

góc BAD = góc BED (=90°)

BD chung

góc ABD = góc EBD (BD là tia p/g của góc ABC)

=> △ABD = △EBD (ch-gn)

c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á

 

14 tháng 5 2022

Câu 3 là phần c nha

 

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

DO đó: ΔBAD=ΔBED

Suy ra: BA=BE

hay ΔBAE cân tại B

5 tháng 3 2022

a, Theo định lí Pytago ta đc 

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Vì AE là pg nên 

\(\dfrac{AB}{AC}=\dfrac{BE}{CE}\Rightarrow\dfrac{CE}{AC}=\dfrac{BE}{AB}\)

Theo tc dãy tỉ số bằng nhau ta có 

\(\dfrac{CE}{AC}=\dfrac{BE}{AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow CE=\dfrac{40}{7}cm;BE=\dfrac{30}{7}cm\)

b, Vì EF // BC Theo hệ quả Ta lét \(\dfrac{EC}{BC}=\dfrac{EF}{AB}\Rightarrow EF=\dfrac{EC.AB}{BC}=\dfrac{24}{7}cm\)

a: BC=căn 6^2+8^2=10cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

góc ABK=góc HBK

=>ΔBAK=ΔBHK

c: Xét ΔKAI vuông tại A và ΔKHC vuông tại H có

KA=KH

AI=HC

=>ΔKAI=ΔKHC

=>góc AKI=góc HKC

=>góc AKI+góc AKH=180 độ

=>I,K,H thẳng hàng

d: Xét ΔBIC có BA/AI=BH/HC

nên AH//IC