K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

a) Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H:

AB = AC (Tam giác ABC cân tại A).

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right).\)

b) Xét tam giác ABC cân tại A:

AH là đường cao (AH ⊥ BC).

\(\Rightarrow\) AH là đường trung tuyến (T/c tam giác cân).

\(\Rightarrow\) H là trung điểm BC.

Xét tam giác MBH vuông tại M và tam giác NCH vuông tại N:

BH = CH (H là trung điểm BC).

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right).\\ \Rightarrow BM=CN.\)

Ta có: \(AM=AB-BM;AN=AC-CN.\)

Mà \(\left\{{}\begin{matrix}AB=AC\\BM=CN\end{matrix}\right.\) (cmt).

\(\Rightarrow AM=AN.\Rightarrow\Delta AMN\) cân tại A.

c) Xét tam giác AMN cân tại A:

\(\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)

Xét tam giác ABC cân tại A:

\(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}.\)

\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC\left(dhnb\right).\)

16 tháng 3 2022

Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:

\(AB=AC\)  (\(\Delta ABC\) cân tại A).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)

Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:

\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)

Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)

\(\Rightarrow\Delta AMN\) cân tại A.

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)

Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)

20 tháng 2 2021

tự kẻ hình nghen :33333

a) Xét tam giác AHB và tam giác AHC có

AH chung

AHC=AHB(=90 độ)

AB=AC(gt)

=> tam giác AHB= tam giac AHC(ch-cgv)

b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )

Xét tam giác AMH và tam giác ANH có

A1=A2(cmt)

AH chung

AMH=ANH(=90 độ)

=> tam giấcMH=tam giác ANH(ch-gnh)

=> AM=AN( hai cạnh tương ứng)

=> tam giác AMN cân A

20 tháng 2 2021

các môn tự nhiên ko nên copy mạng nha bn, thầy Lâm bảo thế, nếu cop sẽ bị trừ GPok

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAHB=ΔAHC(cmt)

nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAH}=\widehat{NAH}\)

Xét ΔMAH vuông tại M và ΔNAH vuông tại N có 

AH chung

\(\widehat{MAH}=\widehat{NAH}\)(cmt)

Do đó: ΔMAH=ΔNAH(cạnh huyền-góc nhọn)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔMAN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AH chung

HB=HC

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>HB=HC và góc BAH=góc CAH

=>AH là phân giác của góc BAC và H là trung điểm của BC

22 tháng 1 2016

a,xét tam giac AHB va AHC.Ta có

góc AHB=góc AHC (vi = 90 độ)

cạnh AB=AC(vì ABC cân tại A)

góc B=góc C (vì ABC cân tại A)

-> tam giác AHB=AHC (cạnh huyền-góc nhọn)

-> goc MAH=gocNAH

b, xét tam giac AMH va ANH. có

goc ANH=góc AMH (90 độ)

cạnh AH chung

goc MAH=goc NAH(cm trên)

->tam giac AMH=ANH (cạnh huyền góc nhọn)

->AM=AN

->AMN là tam giác cân tại A

 

12 tháng 3 2020

https://hoidap247.com/cau-hoi/241131

Bn vô đó tham khảo nha!

12 tháng 3 2020

Ừm,mình biết rồi.Cảm ơn bạn nhé!

 

`\color{blue}\text {#DuyNam}`

`a,` Xét Tam giác `AHB` và Tam giác `AHC` có:

`AB = AC (g``t)`

`AH` chung

`HB = HC (g``t)`

`=>` Tam giác `AHB =` Tam giác `AHC (c-c-c)`

`b,` Chứng minh `AH \bot BC` cậu nhỉ`?`

Vì Tam giác `AHB =` Tam giác `AHC (a)`

`->` \(\widehat{AHB}=\widehat{AHC}\) `(2` góc tương ứng `)`

Mà `2` góc này nằm ở vị trí kề bù `->`\(\widehat{AHB}+\widehat{AHC}=180^0\) 

`->`\(\widehat{AHB}=\widehat{AHC}=\)`180/2=90^0`

`-> AH \bot BC`

`c,` Trên tia đối của `AH` lấy điểm `M` chứ nhỉ`?`

Xét Tam giác `AHB` và Tam giác `CHM` có:

`AH = HM (g``t)`

\(\widehat{AHB}=\widehat{CHM}\) `(2` góc đối đỉnh `)`

`BH=HC (g``t)`

`=>` Tam giác `AHB =` Tam giác `CHM (c-g-c)`

`->`\(\widehat{ABH}=\widehat{MCH}\) `(2` góc tương ứng `)`

Mà `2` góc này nằm ở vị trí sole trong `-> AB`//` CM`

loading...