x/8=y/4;y/3=z/5va 2x-3y-z=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x^2+y^2=a; x^2*y^2=b
nên hệ pt
Giải ra tìm a,b rồi thay vô tìm x,y
Từ x8+x4y4+y8=(x4+y4)2-x4y4=(x4+y4-x2y2) (x4+y4+x2y2)=4(x4+y4-x2y2) =8
=>(x4+y4-x2y2)=2=>x4+y4=2+x2y2 kết hợp với x4+y4+x2y2=4
=> 2+x2y2+x2y2=4 => x2y2=1 (x4y4 sẽ = 1 nốt ) => x4+y4=3 và x8+y8=7
Xét (x4+y4)3=x12+y12+3x4y4(x4+y4)=x12+y12+3.1.3=33=27
=>x12+y12=18=> A = 18+1=19
cho cac so x,y thoa man:x^4+x^2y^2+y^4-4=0
x^8+x^4y^4+y^8=8
A=x^12+x^2y^2+y^12 co gia tri la bao nhieu
X^8+x^4y^4+y^8=8
hay (x^4+y^4)^2-x^4y^4=8
hay (x^4+y^4+x^2y^2)(x^4+y^4-x^2y^2)=8
mà x^4+x^2y^2+y^4-4=0 nên x^4+y^3-x^2y^2=2
biết tổng hiệu tìm được x,y thôi/
Ta có
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
Ta có \(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
\(=\left(x^8-y^8\right)\left(x^8+y^8\right)\)
\(=x^{16}-y^{16}\)
\(\hept{\begin{cases}\frac{x}{8}=\frac{y}{4}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{24}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{20}\end{cases}}}\)
\(\Rightarrow\frac{x}{24}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{48}=\frac{3y}{36}=\frac{2x-3y-z}{48-36-20}=\frac{6}{-8}=-\frac{3}{4}\)
\(\Rightarrow\hept{\begin{cases}x=-18\\y=-9\\z=-15\end{cases}}\)
bạn nào júp mk voj