\(\sqrt{2}\)

CMR : \(\fra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

TH1: Nếu có 1 số bằng 0, giả sử là z, khi đó ta có \(x^4+y^4=1\)

và \(P=x^2+y^2\ge\sqrt{x^4+y^4}=1\)

Dấu '=' xảy ra khi 1 số =0, một số = \(\pm1\)

TH2: Nếu các số đều khác 0

Từ giả thiết => tồn tại tam giác ABC nhọn sao cho

\(x^2=\cos A,y^2=\cos B,z^2=\cos C\)

\(P=\cos A+\cos B+\cos C-\sqrt{2\cos A\cos B\cos C}\)

\(=1+4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}-\sqrt{2\cos A\cos B\cos C}\)

Ta chứng minh \(4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}\ge\sqrt{2\cos A\cos B\cos C}\)  (1)

Ta có (1) \(\Leftrightarrow8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}\ge\cos A\cos B\cos C\)

\(\Leftrightarrow\frac{8\sin^2\frac{A}{2}\sin^2\frac{B}{2}\sin^2\frac{C}{2}}{\sin A\sin B\sin C}\ge\frac{\cos A\cos B\cos C}{\sin A\sin B\sin C}\)

\(\Leftrightarrow\cot A\cot B\cot C\le\tan\frac{A}{2}\tan\frac{B}{2}\tan\frac{C}{2}\)

\(\Leftrightarrow\tan A\tan B\tan C\ge\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}\)

\(\Leftrightarrow\tan A+\tan B+\tan C\ge\cot\frac{A}{2}+\cot\frac{B}{2}+\cot\frac{C}{2}\)  (2)

bđt (2) đúng vì \(\tan A+\tan B\ge2\cot\frac{C}{2}\)  và 2 bđt tương tự

Dấu '=' xảy ra khi tam giác đều \(\Leftrightarrow x^2=y^2=z^2=\frac{1}{2}\)

\(\Rightarrow P\ge1\)

Dấu '=' xảy ra khi 2 số =0, một số \(=\pm1\)  hoặc \(x^2=y^2=z^2=\frac{1}{2}\)

Vậy GTNN của P là 1

7 tháng 5 2019

Áp dụng BĐT Cô-si ta có:

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{3xy}\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)

Tương tự:\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz};\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)

Công vế với vế của 3 BĐT trên ta đươc:

\(P\ge\frac{\sqrt{3xy}}{xy}+\frac{\sqrt{3yz}}{yz}+\frac{\sqrt{3zx}}{zx}=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\) \(=\sqrt{3}.\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\sqrt{3}\)

Dấu '='xảy ra khi \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy \(P_{min}=3\sqrt{3}\)khi \(x=y=z=1\)

:))

16 tháng 10 2020

Vì \(x\ge1\Rightarrow x^2\ge x\)

Từ đó: \(P\ge\frac{x}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}=x\left[\frac{1}{\left(x+y\right)^2+x}+\frac{1}{z^2+x}\right]\)

\(\ge x\cdot\frac{4}{\left(x+y\right)^2+x+z^2+x}=\frac{4x}{\left(x+y\right)^2+z^2+2x}\) (Cauchy Schwarz)

Lại có: \(\left(x+y\right)^2+z^2=x^2+y^2+z^2+2xy=3\left(x+y+z\right)\)

\(\le3\sqrt{2\left[\left(x+y\right)^2+z^2\right]}\)

\(\Rightarrow\left(x+y\right)^2+z^2\le18\)

\(\Rightarrow P\ge\frac{4x}{18+2x}=2-\frac{18}{x+9}\ge2-\frac{18}{1+9}=\frac{1}{5}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Vậy Min(P) = 1/5 khi x = 1 ; y = 2 ; z = 3

NV
14 tháng 5 2019

Áp dụng BĐT Bunhiacôpxki:

\(1=\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\le\left(x+y+z\right)\left(x+y+z\right)\)

\(\Rightarrow x+y+z\ge1\)

\(T=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)

\(\Rightarrow T_{min}=\frac{1}{2}\) khi \(x=y=z=\frac{1}{3}\)

5 tháng 6 2016

Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)  (Nhân cả tử và mẫu tỷ số thứ nhất với 2, tỷ số thứ hai với 3) 

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{95-5}{9}=10\)

Từ \(\frac{2x-2}{4}=10\Rightarrow2x-2=40\Rightarrow2x=42\Rightarrow x=21\)

Từ \(\frac{3y-6}{9}=10\Rightarrow3y-6=90\Rightarrow3y=96\Rightarrow y=32\)

Từ \(\frac{z-3}{4}=10\Rightarrow z-3=40\Rightarrow z=43\)

Khi đó x+y+z=21+32+43=96

 

 

5 tháng 6 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(=>\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\)

\(=>\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Theo t/c dãy rỉ số=nhau:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)\(=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{9}=\frac{95+\left(-5\right)}{9}=\frac{90}{9}=10\)

=>2x-2=10.4=>2x-2=40=>2x=42=>x=21

3y-6=10.9=>3y-6=90=>3y=96=>y=32

z-3=10.4=>z-3=40=>z=43

Vậy x+y+z=21+32+4396

 

3 tháng 9 2020

Giả sử \(y\) nằm giữa \(x\) và \(z\)

\(\Rightarrow\left(y-z\right)\left(y-x\right)\le0\)

\(\Leftrightarrow y^2+zx\le xy+zx\)

\(\Leftrightarrow y^2z+z^2x\le xyz+z^2x\)

\(\Leftrightarrow x^2y+y^2z+z^2x\le x^2y+xyz+z^2x=y.\left(x^2+zx+z^2\right)\)

Nên : \(P\le y.\left(x^2+zx+z^2\right)\le y.\left(x+z\right)^2\)

\(=\frac{1}{2}.2y.\left(x+z\right).\left(x+z\right)\le\frac{1}{2}.\left[\frac{2y+x+z+x+z}{3}\right]^3\) \(=\frac{1}{2}\cdot\frac{8}{27}=\frac{4}{27}\)

Dấu "=" xảy ra \(\Leftrightarrow x=0,y=\frac{1}{3},z=\frac{2}{3}\)  và các hoán vị.

18 tháng 8 2019

Tu gia thuyet suy ra:\(xyz\ge0\Rightarrow x+y+z\le0\)

\(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\le\frac{x+y+z+6}{2}\le\frac{6}{2}=3\)

Dau '=' xay ra khi \(x=y=z=0\)