Cho rằng: a2 + b2 chia hết cho ab (sao cho a,b là 2 số tự nhiên)
Tính giá trị của A = a2+b2 / ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Lời giải:
Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.
Chứng minh:
Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)
Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$
$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$
Vậy ta có đpcm
-----------------------------
Áp dụng vào bài:
TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$
TH1: Nếu $a\vdots 3, b\not\vdots 3$
$\Rightarrow b^2$ chia $3$ dư $1$
$\Rightarrow b^2+3\vdots 3$
$\Rightarrow a(b^2+3)\vdots 9$
$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$
TH3: Nếu $a\not\vdots 3; b\vdots 3$
$\Rightarrow a^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3$
$\Rightarrow b(a^2+2)\vdots 9$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
TH4: Nếu $a\not\vdots 3; b\not\vdots 3$
$\Rightarrow a^2, b^2$ chia $3$ dư $1$
$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$
$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$
Từ các TH trên ta có đpcm.
Ta có:
\(\dfrac{a}{b}=ab\Rightarrow a=\dfrac{a}{b^2}\Rightarrow b^2=1\Rightarrow\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)
+) Nếu b=1 \(\Rightarrow ab=a+b\Rightarrow a=a+1\left(vôlí\right)\)
+) Nếu \(b=-1\Rightarrow ab=a+b\Rightarrow-a=a-1\Rightarrow a=\dfrac{1}{2}\)
\(T=a^2+b^2=\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2=\dfrac{1}{4}+1=\dfrac{5}{4}\)
ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1ab=ab⇒a=ab2⇒b2=1⇒[b=1b=−1
+) Nếu b=1 ⇒ab=a+b⇒a=a+1(vôlí)⇒ab=a+b⇒a=a+1(vôlí)
+) Nếu b=−1⇒ab=a+b⇒−a=a−1⇒a=12b=−1⇒ab=a+b⇒−a=a−1⇒a=12
T=a2+b2=(12)2+(−1)2=14+1=54
Đáp án A.
Ta có y ' = 2 x 2 − 2 m x − 6 m 2 + 2.
Để hàm số có 2 điểm cực trị
⇔ y ' = 0 có 2 nghiệm phân biệt.
⇔ Δ ' = m 2 + 4 3 m 2 − 1 > 0 ⇔ 13 m 2 − 4 > 0 ⇔ m > 2 13 m < − 2 13 .
Khi đó, theo Viet ta có
x 1 + x 2 = m x 1 x 2 = 1 − 3 m 2 .
Mà x 1 x 2 + 2 x 1 + x 2 = 1 nên suy ra
1 − 3 m 2 + 2 m = 1 ⇔ 3 m 2 − 2 m ⇔ m = 0 m = 2 3 .
Kết hợp với điều kiện, ta được
m = 2 3 = a b ⇒ a = 2 b = 3 → S = 2 2 + 3 2 = 13.
\(a^2+b^2\)chia hết cho \(ab\)với a;b là số tự nhiên => a;b khác 0
Note: Nếu bạn đã HỎI hãy có trách nhiệm khi được TRẢ LỜI.