Bài 4. Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE. Gọi K là giao điểm của BE và CD, H là giao điểm của AK và BC. Chứng minh rằng:
a. BE = CD; b. ΔKBD = ΔKCE; c. AK là phân giác của góc A
d. AK vuông góc với BC; e. DE // BC; f. HA là phân giác của góc DHE.
giúp mình với ạ
a) Xét \(\Delta AEB\) và \(\Delta ADC:\)
AE = AD (gt).
\(\widehat{A}chung.\)
AB = AC \((\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AEB=\Delta ADC\left(c-g-c\right).\)
\(\Rightarrow BE=CD.\)
b) \(\Rightarrow\Delta AEB=\Delta ADC\left(cmt\right).\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}.\)
Ta có: \(\widehat{BDK}=180^o-\widehat{ADC};\widehat{CEK}=180^o-\widehat{AEB}.\)
Mà \(\widehat{AEB}=\widehat{ADC}\left(\Delta AEB=\Delta ADC\right).\)
\(\Rightarrow\widehat{BDK}=\widehat{CEK}.\)
Xét \(\Delta KBD\) và \(\Delta KCE:\)
\(\widehat{DBK}=\widehat{ECK}\left(\widehat{ABE}=\widehat{ACD}.\right).\)
BD = CE (cmt).
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right).\)
\(\Rightarrow\Delta KBD=\Delta KCE\left(g-c-g\right).\)
c) Xét \(\Delta AKB\) và \(\Delta AKC:\)
\(AKchung.\)
AB = AC (\(\Delta ABC\) cân tại A).
KB = KC \(\left(\Delta KBD=\Delta KCE\right).\)
\(\Rightarrow\Delta AKB=\Delta AKC\left(c-c-c\right).\\ \Rightarrow\widehat{KAB}=\widehat{KAC}.\)
\(\Rightarrow\) AK là phân giác của \(\widehat{A}.\)
Xét \(\Delta ABC\) cân tại A:
AK là phân giác của \(\widehat{A}\left(cmt\right).\)
\(\Rightarrow\) AK là đường cao.
\(\Rightarrow AK\perp BC.\)
cảm ơn bạn nhiều