K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

A B C E D K

12 tháng 2 2018

a, ta có:

+/ \(\Delta\)ABC cân tại A=> \(\widehat{ABC}=\widehat{ACB}\)và AB=AC

+/AB=AC(gt)

AD+BD=AE+CE

Mà AD=AE(gt)

SUY RA:BD=CE

Xét \(\Delta BCD\)và \(\Delta CEB\)

BC chung

\(\widehat{ABC}=\widehat{ACB}\)(cmt)

BD=CE(cmt)

Suy ra:  \(\Delta BCD\)\(\Delta CEB\)

=>BE=CD(đpcm)

29 tháng 11 2021

Tham Khảo nha bạn :

https://olm.vn/hoi-dap/detail/21858656221.html

25 tháng 2 2022

tham khảo
https://hoc24.vn/hoi-dap/tim-kiem?id=561093&q=Cho%20tam%20gi%C3%A1c%20ABC%20c%C3%A2n%20t%E1%BA%A1i%20A%20.%20%C4%90i%E1%BB%83m%20D%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AB%20%2C%20%C4%91i%E1%BB%83m%20E%20thu%E1%BB%99c%20c%E1%BA%A1nh%20AC%20sao%20cho%20AD%20%3D%20AE%20.%20G%E1%BB%8Di%20K%20l%C3%A0%20giao%20%C4%91i%E1%BB%83m%20c%E1%BB%A7a%20BE%20v%C3%A0%20CD%20.%20Ch%E1%BB%A9ng%20minh%20r%E1%BA%B7ng%20%20%20a%29%20BE%20%3D%20CD%20%20b%29%20Tam%20gi%C3%A1c%20KBD%20b%E1%BA%B1ng%20tam%20gi%C3%A1c%20KCE%20%20c%29%20AK%20l%C3%A0%20ph%C3%A2n%20gi%C3%A1c%20c%E1%BB%A7a%20g%C3%B3c%20A%20%20d%29%20Tam%20gi%C3%A1c%20KBC%20c%C3%A2n

25 tháng 2 2022

làm hộ mik cái 

22 tháng 2 2022

a, Xét tam giác ABE và tam giác ACD

AB = AC 

AE = AD 

^A _ chung 

Vậy tam giác ABE = tam giác ACD (c.g.c) 

=> BE = CD ( 2 cạnh tương ứng ) 

=> ^ABE = ^ACD ( 2 góc tương ứng ) 

b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC 

Xét tam giác KBD và tam giác KCE có 

^BKD = ^CKE ( đối đỉnh ) 

^KBD = ^KCE (cmt) 

BD = CE (cmt) 

Vậy tam giác KBD = tam giác KCE (g.c.g) 

c, Xét tam giác ABH và tam giác ACH có 

^B = ^C 

AH _ chung 

AB = AC 

Vậy tam giác ABH = tam giác ACH ( c.g.c ) 

=> ^BAH = ^CAH ( 2 góc tương ứng ) 

=> AH là đường phân giác 

hay AK là đường phân giác 

d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao 

hay AK vuông BC 

e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)

23 tháng 2 2022

em học lớp 7 ạ

 

a: Xét ΔAEBvà ΔADC có

AE=AD
góc A chung

AB=AC
=>ΔAEB=ΔADC

=>BE=CD

b: Xét ΔMDB và ΔMEC có

góc MDB=góc MEC

DB=EC

góc MBD=góc MCE
=>ΔMDB=ΔMEC

c: Xét ΔAMB và ΔAMC có

MA chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

1 tháng 5 2023

`@`` \text {dnv}`

`a,`

Xét `\Delta ABE` và `\Delta ACD`:

`\text {AB = AC (Tam giác ABC cân tại A)}`

`\hat {A}`` \text {chung}`

`\text {AD = AE (gt)}`

`=> \Delta ABE = \Delta ACD (c-g-c)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Vì `\Delta ABE = \Delta ACD (a)`

$ -> \widehat {ACD} = \widehat {ABE} (\text {2 góc tương ứng})$

`->` $\widehat {ADC} = \widehat {AEB} (\text {2 góc tương ứng})$

Ta có: \(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\)

$\widehat {ADC} = \widehat {AEB}$

`->` $\widehat {CEB} = \widehat {BDC}$

Ta có:\(\left\{{}\begin{matrix}\text{AB = AD + DB}\\\text{AC = AE + EC}\end{matrix}\right.\)

Mà: \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{AD = AE}\end{matrix}\right.\)

`-> \text {BD = EC}`

Xét `\Delta BMD` và `\Delta CME`:

\(\widehat{\text{DBM}}=\widehat{\text{ECM}}\left(\text{CMT}\right)\)

\(\text{BD = CE (CMT)}\)

\(\widehat{\text{BDM}}=\widehat{\text{CEM}\text{ }}\text{ }\left(\text{CMT}\right)\)

`=> \Delta BMD = \Delta CME (g-c-g)`

`c,` Đề có phải là "Chứng minh AM là phân giác của góc BAC" ?

Vì `\Delta BMD = \Delta CME (b)`

`-> \text {MB = MC (2 cạnh tương ứng)}`

Xét `\Delta BAM` và `\Delta CAM`:

`\text {AB = AC} (\Delta ABC \text {cân tại A})`

`\text {AM chung}`

`\text {MB = MC (CMT)}`

`=> \Delta BAM = \Delta CAM (c-c-c)`

`->` $\widehat {BAM} = \widehat {CAM} (\text {2 góc tương ứng})$

`-> `\(\text{AM là tia phân giác của }\widehat{\text{BAC}}\)

loading...

a: Xet ΔAEB và ΔADC có

AE=AD

góc A chung

AB=AC

=>ΔAEB=ΔADC

=>BE=CD

b: Xet ΔKDB và ΔKEC có

góc KDB=góc KEC

DB=EC

góc KBD=góc KCE

=>ΔKBD=ΔKCE

c: Xét ΔABK và ΔACK có

AB=AC

BK=CK

AK chung

=>ΔABK=ΔACK

=>góc BAK=góc CAK

=>AK là phân giác của góc BAC

d: ΔABC cân tại A

mà AI là phân giác

nên AI vuông góc BC

NM
7 tháng 3 2021

A B D E K C

a. ta có \(\hept{\begin{cases}\widehat{A}\text{ chung}\\AB=AC\\AD=AE\end{cases}\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow}BE=CD\)

b. ta có \(\hept{\begin{cases}BD=CE\\\widehat{BKD}=\widehat{CKE}\text{ (đối đỉnh)}\\\widehat{KBE}=\widehat{KCD}\text{ (Do chứng minh ở câu a)}\end{cases}\Rightarrow\Delta KBD=\Delta KCE}\)

c. ta có \(\hept{\begin{cases}\widehat{ABK}=\widehat{ACK}\text{ (Do c/m ở câu a)}\\AB=AC\\KB=KC\text{ (Do c/m ở câu b)}\end{cases}\Rightarrow\Delta ABK=\Delta ACK\left(c.g.c\right)\Rightarrow}\)AK là phân giác

d. ta có KB=KC ( kết quả c/m của câu b) nên KBC cân tại K

4 tháng 2 2022
a) Xét tam giác BCD,ta có: Góc B=C BD = EC BC là cạnh chung Do đó tam giác BCD= tam giác BCD (c-g-c) BE = CD ( 2 cạnh tương ứng) Vậy ... b)Xét tâm giác KBD và tam giác KCE,ta có : BKD = CKE ( đối đỉnh ) BD = CE KB = KC Do đó tg KBD =tg KCE(c-g-c) Vậy ...

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

a.Xét tam giác DBC và tam giác ECB có:

DB=EC (AB=AC và AD=AE)

góc ABC = góc ACB (cân tại A)

BC là cạnh chung

Do đó tam giác DBC = tam giác ECB (c.g.c)

Suy ra BE= CD (ĐPCM)

16 tháng 2 2016

a. Ta có: AD + DB = AB; AE + EC = AC mà AD = AE; AB = AC

=> DB = EC

\(\Delta\)DCE và \(\Delta\)EBD có:

      DB = EC (cmt)

      B = C (gt)

      DC: cạnh chung

=> \(\Delta\)DCE = \(\Delta\)EBD (c.g.c)

=> BE = CD (hai cạnh tương ứng)